सामग्री की तालिका
10 संबंधों: टाऊ (कण), टाऊ न्यूट्रिनो, बीटा क्षय, मानक प्रतिमान, म्यूऑन, म्यूऑन न्यूट्रिनो, लेप्टॉन, इलेक्ट्रॉन, इलेक्ट्रॉन न्यूट्रिनो, कण भौतिकी।
- कण भौतिकी
- संरक्षण के नियम
टाऊ (कण)
टाऊ एक मूलभूत कण है। इसका प्रतीक चिह्न τ है। इसका आवेश इकाई (e) होता है अर्थात इलेक्ट्रॉन के समान होता है। विद्युतणु की भाँति यह कण भी लेप्टॉनों की श्रेणी में आता है। इसका द्रव्यमान 1.777 Gev/c2 है। इसका प्रचक्रण 1/2 होता है। आवेश के कारण यह दो फ्लेवर के साथ पाया जाता है जो एक दूसरे के प्रतिकण होते हैं अर्थात म्यूऑन एवं प्रतिटाऊ। टाऊ लेप्टॉन श्रेणी में आता है अतः यह दुर्बल अन्योन्य क्रिया में भाग लेता है। चूँकि यह एक आवेशित कण है अतः विद्युत चुम्बकीय अन्योन्य क्रियाओं में भी भाग लेता है। .
देखें लेप्टॉन संख्या और टाऊ (कण)
टाऊ न्यूट्रिनो
टाऊ न्यूट्रिनो एक मूलभूत कण है। इसका प्रतीक चिह्न है। इसका आवेश शून्य होता है अर्थात यह एक उदासीन कण है। न्यूट्रिनों तीन प्रकार के होते हैं जिनमें से यह टाऊ से सम्बद्ध लेप्टॉनों की श्रेणी में आता है। इसका द्रव्यमान लगभग शून्य माना जाता है, प्रायोगिक तौर पर इसका सीमान्त मान 15.5 Mev/c2 से कम है। इसका प्रचक्रण 1/2 होता है। यह दो फ्लेवर के साथ पाया जाता है जो कण और प्रतिकण हैं अर्थात टाऊ न्यूट्रिनो एवं टाऊ प्रतिन्यूट्रिनो। ज्ञात कणों में केवल न्यूट्रिनों ही ऐसे कण हैं जो केवल दुर्बल अन्योन्य क्रिया में भाग लेते हैं। न्यूट्रिनो प्रबल अन्योन्य क्रिया एवं विद्युत चुम्बकीय अन्योन्य क्रियाओं में भाग नहीं लेते। द्रव्यामान अज्ञात होने के कारण इनकी गुरुत्वीय अन्योन्य क्रिया का सही मान प्राप्त करना मुश्किल है। .
देखें लेप्टॉन संख्या और टाऊ न्यूट्रिनो
बीटा क्षय
नाभिकीय भौतिकी में, बीटा क्षय (बीटा-डीके) एक प्रकार का रेडियोधर्मी क्षय होता है, जिसमें बीटा कण (एक विद्युदणु (इलेक्ट्रॉन) या एक धनाणु (पॉज़िट्रॉन)) उत्सर्जित होते हैं। यह दो प्रकार का होता है। विद्युदणु उत्सर्जन होने पर, इसे बीटा-ऋण कहते हैं, जबकि धनाणु उत्सर्जन होने पर इसे बीटा धन कहते हैं। बीटा कणों की गतिज ऊर्जा लगातार वर्णक्रम की होती है और इसका परास शून्य से अधिकतम उपलब्ध ऊर्जा तक होता है। कार्बन-14 का क्षय होकर नाइट्रोजन-14 में बदलना इलेक्ट्रॉन क्षय (electron emission या β− क्षय) का उदाहरण है। इसी प्रकार, मैगनीशियम-23 का क्षय होकर सोडियम-23 में परिवर्तन पॉजिट्रॉन-क्षय या β+ क्षय का उदाहरण है। नीचे दो अन्य उदाहरण दिये गये हैं- बीटा-क्षय का सामान्य सूत्र- .
देखें लेप्टॉन संख्या और बीटा क्षय
मानक प्रतिमान
मूलभूत कणों का, आमान बोसॉनों (सबसे दायां स्तम्भ) के साथ मानक प्रतिमान। मानक प्रतिमान या मानक मॉडल, भौतिकशास्त्र का एक सिद्धान्त है जिसका संबंध विद्युत्-चुम्बकीय, दुर्बल तथा प्रबल नाभिकीय अन्तःक्रियाओं से है। ये ऐसी अन्तःक्रियाएँ हैं, जो कि ज्ञात उपपारमाण्विक कणों की गतिकी की व्याख्या करती हैं। इसका विकास बीसवीं सदी के मध्य से लेकर देर-सदी तक हुआ। ये कई हाथों से बुना हुआ एक पट है, जो कि कभी तो नई प्रायोगिक खोजों से आगे बढ़ा तो कभी सैद्धान्तिक प्रगतियों से। इसका विकास सही अर्थों में सहकार के साथ हुआ है, जो महाद्वीपों और दशकों में विस्तृत है। इसका आज का प्रारूप 1970 के दशक के मध्य में बना, जबकि क्वार्क का अस्तित्व सुनिश्चित किया गया। उसके बाद तो तल क्वार्क (1977), शीर्ष क्वार्क (1995) और टॉ क्वार्क (2000) की खोज ने मानक प्रतिमान की साख और बढ़ा दी। अधिक हाल की घटना के रूप में 2011-2012 में हिग्स बोसॉन की खोज ने इसके सारे अनुमानित कणों का समुच्चय पूरा कर दिया है। प्रायोगिक परिणामों की दीर्घ शृंख्ला की सफलतापूर्वक व्याख्या कररने के कारण मानक प्रतिमान को कभी कभी "लगभग सबकुछ का सिद्धान्त" भी कहा जाता है। मानक प्रतिमान मौलिक अन्तःक्रियाओं का सम्पूर्ण सिद्धान्त होते होते रह जाता है, क्योंकि इसमें से गुरुत्वाकर्षण का समूचा सिद्धान्त ही गायब है, साथ ही यह विश्व के त्वरित विस्तार की भविष्यवाणी भी नहीं करता है (जैसा कि अन्धकार-ऊर्जा द्वारा वर्णित है)। .
देखें लेप्टॉन संख्या और मानक प्रतिमान
म्यूऑन
म्यूऑन एक मूलभूत कण है। इसका प्रतीक चिह्न &muon; है। इसका आवेश इकाई (e) होता है अर्थात इलेक्ट्रॉन के समान होता है। विद्युतणु की भाँति यह कण भी लेप्टॉनों की श्रेणी में आता है। इसका द्रव्यमान 105.7 Mev/c2 है। इसका प्रचक्रण 1/2 होता है। आवेश के कारण यह दो फ्लेवर के साथ पाया जाता है जो एक दूसरे के प्रतिकण होते हैं अर्थात म्यूऑन एवं प्रतिम्यूऑन। म्यूऑन लेप्टॉन श्रेणी में आता है अतः यह दुर्बल अन्योन्य क्रिया में भाग लेता है। चूँकि यह एक आवेशित कण है अतः विद्युत चुम्बकीय अन्योन्य क्रियाओं में भी भाग लेता है। .
देखें लेप्टॉन संख्या और म्यूऑन
म्यूऑन न्यूट्रिनो
म्यूऑन न्यूट्रिनो एक मूलभूत कण है। इसका प्रतीक चिह्न है। इसका आवेश शून्य होता है अर्थात यह एक उदासीन कण है। न्यूट्रिनों तीन प्रकार के होते हैं जिनमें से यह म्यूऑन से सम्बद्ध लेप्टॉनों की श्रेणी में आता है। इसका द्रव्यमान लगभग शून्य माना जाता है, प्रायोगिक तौर पर इसका सीमान्त मान 0.17 Mev/c2 से कम है। इसका प्रचक्रण 1/2 होता है। यह दो फ्लेवर के साथ पाया जाता है जो कण और प्रतिकण हैं अर्थात म्यूऑन न्यूट्रिनो एवं म्यूऑन प्रतिन्यूट्रिनो। ज्ञात कणों में केवल न्यूट्रिनों ही ऐसे कण हैं जो केवल दुर्बल अन्योन्य क्रिया में भाग लेते हैं। न्यूट्रिनो प्रबल अन्योन्य क्रिया एवं विद्युत चुम्बकीय अन्योन्य क्रियाओं में भाग नहीं लेते। द्रव्यामान अज्ञात होने के कारण इनकी गुरुत्वीय अन्योन्य क्रिया का सही मान प्राप्त करना मुश्किल है। .
देखें लेप्टॉन संख्या और म्यूऑन न्यूट्रिनो
लेप्टॉन
लेप्टॉन (lepton), क्वार्क और गेज बोसॉन की तरह मूलभूत कण का एक परीवार है। लेप्टॉन फर्मिऑन होते हैं जिनकी प्रचक्रण १/२ होती है। श्रेणी:मूलकण.
देखें लेप्टॉन संख्या और लेप्टॉन
इलेक्ट्रॉन
इलेक्ट्रॉन या विद्युदणु (प्राचीन यूनानी भाषा: ἤλεκτρον, लैटिन, अंग्रेज़ी, फ्रेंच, स्पेनिश: Electron, जर्मन: Elektron) ऋणात्मक वैद्युत आवेश युक्त मूलभूत उपपरमाणविक कण है। यह परमाणु में नाभिक के चारो ओर चक्कर लगाता हैं। इसका द्रव्यमान सबसे छोटे परमाणु (हाइड्रोजन) से भी हजारगुना कम होता है। परम्परागत रूप से इसके आवेश को ऋणात्मक माना जाता है और इसका मान -१ परमाणु इकाई (e) निर्धारित किया गया है। इस पर 1.6E-19 कूलाम्ब परिमाण का ऋण आवेश होता है। इसका द्रव्यमान 9.11E−31 किग्रा होता है जो प्रोटॉन के द्रव्यमान का लगभग १८३७ वां भाग है। किसी उदासीन परमाणु में विद्युदणुओं की संख्या और प्रोटानों की संख्या समान होती है। इनकी आंतरिक संरचना ज्ञात नहीं है इसलिए इसे प्राय:मूलभूत कण माना जाता है। इनकी आंतरिक प्रचक्रण १/२ होती है, अतः यह फर्मीय होते हैं। इलेक्ट्रॉन का प्रतिकणपोजीट्रॉन कहलाता है। द्रव्यमान के अलावा पोजीट्रॉन के सारे गुण यथा आवेश इत्यादि इलेक्ट्रॉन के बिलकुल विपरीत होते हैं। जब इलेक्ट्रॉन और पोजीट्रॉन की टक्कर होती है तो दोंनो पूर्णतः नष्ट हो जाते हैं एवं दो फोटॉन उत्पन्न होती है। इलेक्ट्रॉन, लेप्टॉन परिवार के प्रथम पीढी का सदस्य है, जो कि गुरुत्वाकर्षण, विद्युत चुम्बकत्व एवं दुर्बल प्रभाव सभी में भूमिका निभाता है। इलेक्ट्रॉन कण एवं तरंग दोनो तरह के व्यवहार प्रदर्शित करता है। बीटा-क्षय के रूप में यह कण जैसा व्यवहार करता है, जबकि यंग का डबल स्लिट प्रयोग (Young's double slit experiment) में इसका किरण जैसा व्यवहार सिद्ध हुआ। चूंकि इसका सांख्यिकीय व्यवहार फर्मिऑन होता है और यह पॉली एक्सक्ल्युसन सिध्दांत का पालन करता है। आइरिस भौतिकविद जॉर्ज जॉनस्टोन स्टोनी (George Johnstone Stoney) ने १८९४ में एलेक्ट्रों नाम का सुझाव दिया था। विद्युदणु की कण के रूप में पहचान १८९७ में जे जे थॉमसन (J J Thomson) और उनकी विलायती भौतिकविद दल ने की थी। कइ भौतिकीय घटनाएं जैसे-विध्युत, चुम्बकत्व, उष्मा चालकता में विद्युदणु की अहम भूमिका होती है। जब विद्युदणु त्वरित होता है तो यह फोटान के रूप मेंऊर्जा का अवशोषण या उत्सर्जन करता है।प्रोटॉन व न्यूट्रॉन के साथ मिलकर यह्परमाणु का निर्माण करता है।परमाणु के कुल द्रव्यमान में विद्युदणु का हिस्सा कम से कम् 0.0६ प्रतिशत होता है। विद्युदणु और प्रोटॉन के बीच लगने वाले कुलाम्ब बल (coulomb force) के कारण विद्युदणु परमाणु से बंधा होता है। दो या दो से अधिक परमाणुओं के विद्युदणुओं के आपसी आदान-प्रदान या साझेदारी के कारण रासायनिक बंध बनते हैं। ब्रह्माण्ड में अधिकतर विद्युदणुओं का निर्माण बिग-बैंग के दौरान हुआ है, इनका निर्माण रेडियोधर्मी समस्थानिक (radioactive isotope) से बीटा-क्षय और अंतरिक्षीय किरणो (cosmic ray) के वायुमंडल में प्रवेश के दौरान उच्च ऊर्जा टक्कर के कारण भी होता है।.
देखें लेप्टॉन संख्या और इलेक्ट्रॉन
इलेक्ट्रॉन न्यूट्रिनो
इलेक्ट्रॉन न्यूट्रिनो एक मूलभूत कण है। इसका प्रतीक चिह्न है। इसका आवेश शून्य होता है अर्थात यह एक उदासीन कण है। न्यूट्रिनों तीन प्रकार के होते हैं जिनमें से यह इलेक्ट्रॉन से सम्बद्ध लेप्टॉनों की श्रेणी में आता है। इसका द्रव्यमान लगभग शून्य माना जाता है, प्रायोगिक तौर पर इसका सीमान्त मान 2.2 Mev/c2 से कम है। इसका प्रचक्रण 1/2 होता है। यह दो फ्लेवर के साथ पाया जाता है जो कण और प्रतिकण हैं अर्थात इलेक्ट्रॉन न्यूट्रिनो एवं इलेक्ट्रॉन प्रतिन्यूट्रिनो। ज्ञात कणों में केवल न्यूट्रिनों ही ऐसे कण हैं जो केवल दुर्बल अन्योन्य क्रिया में भाग लेते हैं। न्यूट्रिनो प्रबल अन्योन्य क्रिया एवं विद्युत चुम्बकीय अन्योन्य क्रियाओं में भाग नहीं लेते। द्रव्यामान अज्ञात होने के कारण इनकी गुरुत्वीय अन्योन्य क्रिया का सही मान प्राप्त करना मुश्किल है। .
देखें लेप्टॉन संख्या और इलेक्ट्रॉन न्यूट्रिनो
कण भौतिकी
कण भौतिकी, भौतिकी की एक शाखा है जिसमें मूलभूत उप परमाणविक कणो के पारस्परिक संबन्धो तथा उनके अस्तित्व का अध्ययन किया जाता है, जिनसे पदार्थ तथा विकिरण निर्मित हैं। हमारी अब तक कि समझ के अनुसार कण क्वांटम क्षेत्रों के उत्तेजन (excitations) हैं। दूसरे कणों के साथ इनकी अन्तःक्रिया की अपनी गतिकी है। कण भौतिकी के क्षेत्र में अधिकांश रुचि मूलभूत क्षेत्रों (fundamental fields) में है। मौलिक क्षेत्रों और उनकी गतिशीलताओ के सार को सिद्धान्त के रूप में प्रस्तुत किया गया है। इसिलिये कण भौतिकी में अधिकतर स्टैंडर्ड मॉडल (Standard Model) के मूल कणों तथा उनके सम्भावित विस्तार के बारे में अध्यन किया जाता है। .
देखें लेप्टॉन संख्या और कण भौतिकी
यह भी देखें
कण भौतिकी
- X (आवेश)
- अनुप्रस्थ द्रव्यमान
- अनुप्रस्थ परिच्छेद (भौतिकी)
- आवेश वाहक
- इलेक्ट्रॉन वोल्ट
- उपक्रांतिक रिएक्टर
- कण भौतिकी
- गेज बोसॉन
- प्रकीर्णन
- प्रति-कण
- मानक प्रतिमान
- मानक मॉडल से परे भौतिकी
- लेप्टॉन संख्या
- सिंक्रोट्रॉन विकिरण
- सिन्क्रोट्रॉन प्रकाश स्रोत
- सेरेन्कोव विकिरण