सामग्री की तालिका
15 संबंधों: त्रिभुज, त्रिकोणमिति के उपयोग, त्रिकोणमितीय सर्वसमिकाओं की सूची, त्रिकोणीय सर्वेक्षण, पाइथागोरस प्रमेय, प्रतिलोम त्रिकोणमितीय फलन, बहुभुज, ब्रह्मगुप्त, बौधायन, भास्कर प्रथम, समकोण त्रिभुज, ज्या, वराह मिहिर, गणित, आर्यभट।
त्रिभुज
त्रिभुज (Triangle), तीन शीर्षों और तीन भुजाओं वाला एक बहुभुज (Polygon) होता है। यह ज्यामिति की मूल आकृतियों में से एक है। शीर्षों A, B, और C वाले त्रिभुज को \triangle ABC द्वारा दर्शाया जाता है। यूक्लिडियन ज्यामिति में कोई भी तीन असंरेखीय बिन्दु, एक अद्वितीय त्रिभुज का निर्धारण करते हैं और साथ ही, एक अद्वितीय तल (यानी एक द्वि-विमीय यूक्लिडियन समतल) का भी। दूसरे शब्दों में, तीन सरल रेखाओं से घिरी बंद आकृति को त्रिभुज या त्रिकोण कहते हैं। त्रिभुज में तीन भुजाएं और तीन कोण होते हैं। त्रिभुज सबसे कम भुजाओं वाला बहुभुज है। किसी त्रिभुज के तीनों आन्तरिक कोणों का योग सदैव 180° होता है। इन भुजाओं और कोणों के माप के आधार पर त्रिभुज का विभिन्न प्रकार से वर्गीकरण किया जाता है। .
देखें त्रिकोणमिति और त्रिभुज
त्रिकोणमिति के उपयोग
त्रिकोणमिति के हजारों उपयोग होते हैं। पाठ्यपुस्तकों में भूमि सर्वेक्षण, जहाजरानी, भवन आदि का ही प्राय: उल्लेख किया गया होता है। इसके अलावा यह गणित, विज्ञान एवं प्रौद्योगिकी आदि शैक्षिक क्षेत्रों में भी प्रयुक्त होता है। .
देखें त्रिकोणमिति और त्रिकोणमिति के उपयोग
त्रिकोणमितीय सर्वसमिकाओं की सूची
त्रिकोणमितीय सर्वसमिकाएँ, चरों के त्रिकोणमितीय फलनों के रूप में व्यक्त समतायें होती हैं। All of the trigonometric functions of an angle θ can be constructed geometrically in terms of a unit circle centered at ''O''.
देखें त्रिकोणमिति और त्रिकोणमितीय सर्वसमिकाओं की सूची
त्रिकोणीय सर्वेक्षण
उन्नीसवीं शती का राइनलैण्ड-हेस्स क्षेत्र का त्रिकोणीय सर्वेक्षण त्रिकोणीय सर्वेक्षण (Triangulation) उस विधि का नाम है जिसमें सर्वेक्षण के लिये दिये गये क्षेत्र को त्रिकोणीय टुकड़ों के जाल के रूप में बाँटकर सर्वेक्षण को सरलतापूर्वक कर लिया जाता है। इसका सिद्धान्त बहुत सरल है - ज्ञात दूरी पर स्थित किन्हीं भी दो बिंदुओं से किसी तीसरे बिंदु द्वारा बनाये गये कोणों को मापकर त्रिकोणमित्तीय सर्वसमिकाओं की सहायता से उस तीसरे बिन्दु की सही स्थिति निर्धारित की जा सकती है। इसकी विशेषता यह है कि इसमें दूरी का मापन कम से कम करना पड़ता है और कोणों के मापन से काम चल जाता है। कोणों का मापन अधिक शुद्धता से, कम समय मे, कम श्रम से हो जाता है। सामान्यत:, जहाँ दो दूर के बिंदुओं के बीच सीधी दूरी नाप पाना संभव न हो, मगर वे आपस मे दृष्टिगत हों, वहाँ त्रिकोणीय सर्वेक्षण बड़ा लाभप्रद होता है। ट्रैंगुलेशन के उपयोग द्वारा समुद्र में स्थित किसी जलयान की तट से दूरी और उसके निर्देशांक निकाले जा सकते हैं। '''A''' बिन्दु पर स्थित प्रेक्षक कोण '''α''' मापता है; इसी प्रकार, बिन्दु '''B''' पर स्थित प्रेक्षक कोण '''β''' मापता है। यदि A और B के बीच की दूरी या उनके निर्देशांक ज्ञात हों तो ज्या सूत्र की सहायता से '''C''' बिन्दु पर स्थित जहाज के निर्देशांक तथा दूरी '''d''' निकाली जा सकती है। यदि ऐसे त्रिभुज की एक, दो या तीनों भुजाओं पर क्रमानुगत त्रिभुज बनाते चले जाएँ और प्रारंभिक त्रिभुज की एक भुजा, उसके दोनों शीर्ष बिंदुओं के नियामक (coordinate) और बनाए गए सभी त्रिभुजों के कोण ज्ञात हों, तो ऐसी संपूर्ण त्रिभुजमाला की भुजाओं की लंबाइयाँ और त्रिभुज बनानेवाले बिंदुओं के नियामक और बनाए गए सभी त्रिभुजों के कोण ज्ञात हों, तो ऐसी संपूर्ण त्रिभुजमाला की भुजाओं की लंबाइयाँ और त्रिभुज बनानेवाले बिंदुओं के नियामक गणितीय कलन (computations) से ज्ञात किए जा सकते हैं। किसी भी क्षेत्र का मानचित्र बनाने के लिये इस प्रकार के बिंदु संपूर्ण क्षेत्र में समान रूप से बिखरें हुए स्थापित करना आवश्यक होता है। ऐसे बिंदुओं को सामूहिक रूप में सर्वेक्षण हेतु 'नियंत्रण ढाँचा' और प्रत्येक बिंदु को अलग अलग 'सर्वेक्षण स्टेशन' कहते हैं। त्रिकोणीय सर्वेक्षण में गणना में त्रिकोणमित्तीय सर्वसमिकाओं की सहायता ली जाती है जिनमे निम्नलिखित प्रमुख हैं -.
देखें त्रिकोणमिति और त्रिकोणीय सर्वेक्षण
पाइथागोरस प्रमेय
'''बौधायन का प्रमेय''': समकोण त्रिभुज की दो भुजाओं की लम्बाइयों के वर्गों का योग कर्ण की लम्बाई के वर्ग के बराबर होता है। पाइथागोरस प्रमेय (या, बौधायन प्रमेय) यूक्लिडीय ज्यामिति में किसी समकोण त्रिभुज के तीनों भुजाओं के बीच एक सम्बन्ध बताने वाला प्रमेय है। इस प्रमेय को आमतौर पर एक समीकरण के रूप में निम्नलिखित तरीके से अभिव्यक्त किया जाता है- जहाँ c समकोण त्रिभुज के कर्ण की लंबाई है तथा a और b अन्य दो भुजाओं की लम्बाई है। पाइथागोरस यूनान के गणितज्ञ थे। परम्परानुसार उन्हें ही इस प्रमेय की खोज का श्रेय दिया जाता है,हेथ, ग्रंथ I,p.
देखें त्रिकोणमिति और पाइथागोरस प्रमेय
प्रतिलोम त्रिकोणमितीय फलन
गणित में त्रिकोणमितीय फलनों के प्रतिलोम फलनों को प्रतिलोम त्रिकोणमितीय फलन (inverse trigonometric functions) कहते हैं। इनके डोमेन समुचित रूप से सीमित करके पारिभाषित किये गये हैं। इन्हें sin−1, cos−1 आदि के रूप में निरूपित करते हैं और 'साइन इन्वर्स', 'कॉस इन्वर्स' आदि बोलते हैं।.
देखें त्रिकोणमिति और प्रतिलोम त्रिकोणमितीय फलन
बहुभुज
त्रिभुज, चतुर्भुज, अष्टभुज आदि सभी 'बहुभुज' कहलाते हैं। बहुभुज (Polygon) एक समतल सतह पर बनी ज्यामितीय आकृतियों का सामान्य नाम है। बहुभुज कई सरल रेखाओं से बंद होता है। इन सरल रेखाओं को बहुभुज की 'भुजा' कहते हैं। जहां दो भुजाएँ मिलती हैं वह कोण कहलाता है। बहुभुज अंग्रेजी शब्द 'पोलीगोन' का हिंदी रूपांतरण है। अंग्रेजी में पोलीगोन शब्द ग्रीक भाषा के दो शब्दों को मिलने से बना है। इसमें पहला शब्द पोली यानी बहुत और गोनिया यानी कोण.
देखें त्रिकोणमिति और बहुभुज
ब्रह्मगुप्त
ब्रह्मगुप्त का प्रमेय, इसके अनुसार ''AF'' .
देखें त्रिकोणमिति और ब्रह्मगुप्त
बौधायन
बौधायन भारत के प्राचीन गणितज्ञ और शुल्ब सूत्र तथा श्रौतसूत्र के रचयिता थे। ज्यामिति के विषय में प्रमाणिक मानते हुए सारे विश्व में यूक्लिड की ही ज्यामिति पढ़ाई जाती है। मगर यह स्मरण रखना चाहिए कि महान यूनानी ज्यामितिशास्त्री यूक्लिड से पूर्व ही भारत में कई रेखागणितज्ञ ज्यामिति के महत्वपूर्ण नियमों की खोज कर चुके थे, उन रेखागणितज्ञों में बौधायन का नाम सर्वोपरि है। उस समय भारत में रेखागणित या ज्यामिति को शुल्व शास्त्र कहा जाता था। .
देखें त्रिकोणमिति और बौधायन
भास्कर प्रथम
भास्कर प्रथम (600 ई – 680 ईसवी) भारत के सातवीं शताब्दी के गणितज्ञ थे। संभवतः उन्होने ही सबसे पहले संख्याओं को हिन्दू दाशमिक पद्धति में लिखना आरम्भ किया। उन्होने आर्यभट्ट की कृतियों पर टीका लिखी और उसी सन्दर्भ में ज्या य (sin x) का परिमेय मान बताया जो अनन्य एवं अत्यन्त उल्लेखनीय है। आर्यभटीय पर उन्होने सन् ६२९ में आर्यभटीयभाष्य नामक टीका लिखी जो संस्कृत गद्य में लिखी गणित एवं खगोलशास्त्र की प्रथम पुस्तक है। आर्यभट की परिपाटी में ही उन्होने महाभास्करीय एवं लघुभास्करीय नामक दो खगोलशास्त्रीय ग्रंथ भी लिखे। .
देखें त्रिकोणमिति और भास्कर प्रथम
समकोण त्रिभुज
ज्यामिति में समकोण त्रिभुज की परिभाषा एक ऐसे त्रिभुज के रूप में की जाती है जिसका एक कोण 90 अंश का (अर्थात, समकोण) हो। समकोण के सामने वाली भुजा कर्ण कहलाती है। इसकी भुजाओं की लम्बाई के बीच में एक विशेष सम्बन्ध होता है जिसे बौधायन प्रमेय द्वारा व्यक्त किया जाता है। इसे शब्दों में इस प्रकार व्यक्त करते हैं- 300px.
देखें त्रिकोणमिति और समकोण त्रिभुज
ज्या
समकोण त्रिभुज में किसी कोण की ज्या उस कोण के सामने की भुजा और कर्ण के अनुपात के बराबर होती है। गणित में ज्या (Sine), एक त्रिकोणमितीय फलन का नाम है। समकोण त्रिभुज में का समकोण के अलावा एक कोण x है तो, उदाहरण के लिये, यदि कोण का मान डिग्री में हो तो, .
देखें त्रिकोणमिति और ज्या
वराह मिहिर
वराहमिहिर (वरःमिहिर) ईसा की पाँचवीं-छठी शताब्दी के भारतीय गणितज्ञ एवं खगोलज्ञ थे। वाराहमिहिर ने ही अपने पंचसिद्धान्तिका में सबसे पहले बताया कि अयनांश का मान 50.32 सेकेण्ड के बराबर है। कापित्थक (उज्जैन) में उनके द्वारा विकसित गणितीय विज्ञान का गुरुकुल सात सौ वर्षों तक अद्वितीय रहा। वरःमिहिर बचपन से ही अत्यन्त मेधावी और तेजस्वी थे। अपने पिता आदित्यदास से परम्परागत गणित एवं ज्योतिष सीखकर इन क्षेत्रों में व्यापक शोध कार्य किया। समय मापक घट यन्त्र, इन्द्रप्रस्थ में लौहस्तम्भ के निर्माण और ईरान के शहंशाह नौशेरवाँ के आमन्त्रण पर जुन्दीशापुर नामक स्थान पर वेधशाला की स्थापना - उनके कार्यों की एक झलक देते हैं। वरःमिहिर का मुख्य उद्देश्य गणित एवं विज्ञान को जनहित से जोड़ना था। वस्तुतः ऋग्वेद काल से ही भारत की यह परम्परा रही है। वरःमिहिर ने पूर्णतः इसका परिपालन किया है। .
देखें त्रिकोणमिति और वराह मिहिर
गणित
पुणे में आर्यभट की मूर्ति ४७६-५५० गणित ऐसी विद्याओं का समूह है जो संख्याओं, मात्राओं, परिमाणों, रूपों और उनके आपसी रिश्तों, गुण, स्वभाव इत्यादि का अध्ययन करती हैं। गणित एक अमूर्त या निराकार (abstract) और निगमनात्मक प्रणाली है। गणित की कई शाखाएँ हैं: अंकगणित, रेखागणित, त्रिकोणमिति, सांख्यिकी, बीजगणित, कलन, इत्यादि। गणित में अभ्यस्त व्यक्ति या खोज करने वाले वैज्ञानिक को गणितज्ञ कहते हैं। बीसवीं शताब्दी के प्रख्यात ब्रिटिश गणितज्ञ और दार्शनिक बर्टेंड रसेल के अनुसार ‘‘गणित को एक ऐसे विषय के रूप में परिभाषित किया जा सकता है जिसमें हम जानते ही नहीं कि हम क्या कह रहे हैं, न ही हमें यह पता होता है कि जो हम कह रहे हैं वह सत्य भी है या नहीं।’’ गणित कुछ अमूर्त धारणाओं एवं नियमों का संकलन मात्र ही नहीं है, बल्कि दैनंदिन जीवन का मूलाधार है। .
देखें त्रिकोणमिति और गणित
आर्यभट
आर्यभट (४७६-५५०) प्राचीन भारत के एक महान ज्योतिषविद् और गणितज्ञ थे। इन्होंने आर्यभटीय ग्रंथ की रचना की जिसमें ज्योतिषशास्त्र के अनेक सिद्धांतों का प्रतिपादन है। इसी ग्रंथ में इन्होंने अपना जन्मस्थान कुसुमपुर और जन्मकाल शक संवत् 398 लिखा है। बिहार में वर्तमान पटना का प्राचीन नाम कुसुमपुर था लेकिन आर्यभट का कुसुमपुर दक्षिण में था, यह अब लगभग सिद्ध हो चुका है। एक अन्य मान्यता के अनुसार उनका जन्म महाराष्ट्र के अश्मक देश में हुआ था। उनके वैज्ञानिक कार्यों का समादर राजधानी में ही हो सकता था। अतः उन्होंने लम्बी यात्रा करके आधुनिक पटना के समीप कुसुमपुर में अवस्थित होकर राजसान्निध्य में अपनी रचनाएँ पूर्ण की। .
देखें त्रिकोणमिति और आर्यभट