सामग्री की तालिका
21 संबंधों: ऊर्जा, ऊष्मागतिक तापक्रम, प्रकाश का वेग, प्लैंक स्थिरांक, ब्लैक होल (काला छिद्र), बोल्ट्समान नियतांक, मूलभूत भौतिक नियतांक, समय, समानुपात, सौर अर्धव्यास, सूर्य, सेल्सियस, जूल (इकाई), वॉट, वीन विस्थापन नियम, खगोलज्ञ, क्षेत्रफल, कृष्णिका, केल्विन, अन्तरराष्ट्रीय मात्रक प्रणाली, उष्मागतिकी।
- ऊष्मा संचार
- ऊष्मागतिकी के नियम
ऊर्जा
दीप्तिमान (प्रकाश) ऊर्जा छोड़ता हैं। भौतिकी में, ऊर्जा वस्तुओं का एक गुण है, जो अन्य वस्तुओं को स्थानांतरित किया जा सकता है या विभिन्न रूपों में रूपांतरित किया जा सकता हैं। किसी भी कार्यकर्ता के कार्य करने की क्षमता को ऊर्जा (Energy) कहते हैं। ऊँचाई से गिरते हुए जल में ऊर्जा है क्योंकि उससे एक पहिये को घुमाया जा सकता है जिससे बिजली पैदा की जा सकती है। ऊर्जा की सरल परिभाषा देना कठिन है। ऊर्जा वस्तु नहीं है। इसको हम देख नहीं सकते, यह कोई जगह नहीं घेरती, न इसकी कोई छाया ही पड़ती है। संक्षेप में, अन्य वस्तुओं की भाँति यह द्रव्य नहीं है, यद्यापि बहुधा द्रव्य से इसका घनिष्ठ संबंध रहता है। फिर भी इसका अस्तित्व उतना ही वास्तविक है जितना किसी अन्य वस्तु का और इस कारण कि किसी पिंड समुदाय में, जिसके ऊपर किसी बाहरी बल का प्रभाव नहीं रहता, इसकी मात्रा में कमी बेशी नहीं होती। .
देखें स्टेफॉन वोल्ज़मान नियम और ऊर्जा
ऊष्मागतिक तापक्रम
ऊष्मगतिक तापक्रम (Thermodynamic temperature) या 'परम ताप' (absolute temperature)' तापमान का विशुद्ध माप है। यह ऊष्मगतिकी के मुख्य प्राचलों (पैरामीटर) में से एक है। ऊष्मागतिक तापक्रम ऊष्मागतिकी के द्वितीय नियम द्वारा परिभाषित है जिसमें सिद्धान्त रूप में न्यूनतम सम्भव ताप को 'शून्य बिन्दु' माना जाता है। इस ताप को 'परम शून्य' (absolute zero) भी कहते हैं। इस ताप पर पदार्थ के कण न्यूनतम गति की स्थिति में होते हैं तथा इससे कम ठण्डे नहीं हो सकते। क्वाण्टम यांत्रिकी की भाषा में, परम ताप पर पदार्थ अपनी निम्नतम अवस्था (ground state) में होता है जो इसकी न्यूनतम ऊर्जा की अवस्था है। इस कारण ही ऊष्मागतिक तापक्रम को 'परम ताप' भी कहा जाता है। एट्मॉस्फेयर दबाव में दर्शित है। इन सामान्य तापमान पर स्थित परमणुओं की एक औसत गति निश्चित होती है (यहां दो ट्रिलियन गुणा कम करी गयी है)। किसी दिये गये समय पर हीलियम परमाणु औसत से कहीं अधिक तेज गति पर हो सकता है, वहीं कोई दूसरा एकदम निष्क्रीय भी हो सकता है। गति दिखाने हेतु पाँच परमाणु लाल दर्शित हैं। .
देखें स्टेफॉन वोल्ज़मान नियम और ऊष्मागतिक तापक्रम
प्रकाश का वेग
प्रकाश की चाल (speed of light) (जिसे प्राय: c से निरूपित किया जाता है) एक भौतिक नियतांक है। निर्वात में इसका सटीक मान 299,792,458 मीटर प्रति सेकेण्ड है जिसे प्राय: 3 लाख किमी/से.
देखें स्टेफॉन वोल्ज़मान नियम और प्रकाश का वेग
प्लैंक स्थिरांक
प्लैंक स्थिरांक (Planck constant) प्रकृति का एक भौतिक नियतांक है। इसे रोमन लिपि के अक्षर h से प्रदर्शित करते हैं। वैज्ञानिक मैक्स प्लांक ने सर्वप्रथम सिद्धान्त दिया कि यह एक नियतांक है। यह क्वाण्टम यांत्रिकी में क्वान्त के आकार को प्रदर्शित करता है। .
देखें स्टेफॉन वोल्ज़मान नियम और प्लैंक स्थिरांक
ब्लैक होल (काला छिद्र)
बड़े मैग्लेनिक बादल के सामने में एक ब्लैक होल का बनावटी दृश्य। ब्लैक होल स्च्वार्ज़स्चिल्ड त्रिज्या और प्रेक्षक दूरी के बीच का अनुपात 1:9 है। आइंस्टाइन छल्ला नामक गुरुत्वीय लेंसिंग प्रभाव उल्लेखनीय है, जो बादल के दो चमकीले और बड़े परंतु अति विकृत प्रतिबिंबों का निर्माण करता है, अपने कोणीय आकार की तुलना में.
देखें स्टेफॉन वोल्ज़मान नियम और ब्लैक होल (काला छिद्र)
बोल्ट्समान नियतांक
बोल्ट्समान नियतांक (Boltzmann constant, kB or k), एक भौतिक नियतांक है। इसका नामकरण लुडविग बोल्ट्समान के नाम पर किया गया है। इसका मान गैस नियतांक R तथा आवोगाद्रो संख्या NA के अनुपात के बराबर होता है: .
देखें स्टेफॉन वोल्ज़मान नियम और बोल्ट्समान नियतांक
मूलभूत भौतिक नियतांक
भौतिकी में बहुत नियतांक ऐसे हैं, जिनके बारे में वैज्ञानिकों का ऐसा विश्वास है कि समय के साथ साथ उनमें कोई परिवर्तन नहीं होता। इन नियंताकों को भौतिकी के मौलिक नियतांक (Fundamental physical constants) कहते हैं। हमारी चुनी हुई मौलिक इकाइयों के अनुसार इनका मान जो कुछ है, सर्वदा वही रहेगा। ऐसे नियतांकों के कुछ उदाहरण ये हैं: प्रकाश का वेग, अर्थात् वह वेग जिससे प्रकाश की तरंगों का संचरण शून्याकाश (space) में होता है; इलेक्ट्रॉन का आवेश; सर्वव्यापी गुरूत्वाकर्षण का नियतांक, अर्थात् वह बल जिससे एक सेंटीमीटर की दूरी पर रखे एक ग्राम के दो पिंड एक दूसरे को आकर्षित करते हैं; ऊष्मागतिकी पैमाने पर बर्फ विंदु, अर्थात् बर्फ के पिघलने का ताप आदि। कुछ मूलभूत भौतिक नियतांक ऐसे भी हैं जिनका संख्यात्मक मान सभी मात्रक प्रणालियों (system of units) में समान होता है; इन्हें विमारहित भौतिक नियतांक (Dimensionless physical constant) कहते हैं। .
देखें स्टेफॉन वोल्ज़मान नियम और मूलभूत भौतिक नियतांक
समय
समय मापने की प्राचीन (किन्तु मेधापूर्ण) तरीका: '''रेतघड़ी''' समय (time) एक भौतिक राशि है। जब समय बीतता है, तब घटनाएँ घटित होती हैं तथा चलबिंदु स्थानांतरित होते हैं। इसलिए दो लगातार घटनाओं के होने अथवा किसी गतिशील बिंदु के एक बिंदु से दूसरे बिंदु तक जाने के अंतराल (प्रतीक्षानुभूति) को समय कहते हैं। समय नापने के यंत्र को घड़ी अथवा घटीयंत्र कहते हैं। इस प्रकार हम यह भी कह सकते हैं कि समय वह भौतिक तत्व है जिसे घटीयंत्र से नापा जाता है। सापेक्षवाद के अनुसार समय दिग्देश (स्पेस) के सापेक्ष है। अत: इस लेख में समयमापन पृथ्वी की सूर्य के सापेक्ष गति से उत्पन्न दिग्देश के सापेक्ष समय से लिया जाएगा। समय को नापने के लिए सुलभ घटीयंत्र पृथ्वी ही है, जो अपने अक्ष तथा कक्ष में घूमकर हमें समय का बोध कराती है; किंतु पृथ्वी की गति हमें दृश्य नहीं है। पृथ्वी की गति के सापेक्ष हमें सूर्य की दो प्रकार की गतियाँ दृश्य होती हैं, एक तो पूर्व से पश्चिम की तरफ पृथ्वी की परिक्रमा तथा दूसरी पूर्व बिंदु से उत्तर की ओर और उत्तर से दक्षिण की ओर जाकर, कक्षा का भ्रमण। अतएव व्यावहारिक दृष्टि से हम सूर्य से ही काल का ज्ञान प्राप्त करते हैं। .
देखें स्टेफॉन वोल्ज़मान नियम और समय
समानुपात
'''y''', '''x''' के समानुपाती है। गणित में दो चर राशियाँ x तथा y समानुपाती (proportional) कही जाती हैं यदि \tfrac yx का मान नियत (स्थिर/constant) हो। ऐसी स्थिति में कहते हैं कि पहली राशि, दूसरी राशि के समानुपाती है। उदाहरण के लिये, यदि कोई वस्तु नियत वेग से गति कर रही है तो उसके द्वारा तय की गयी दूरी, समय के समानुपाती होगी। दो अनुपातों (ratios) की समता को समानुपात (proportionality) कहते हैं। जैसे \tfrac ac\ .
देखें स्टेफॉन वोल्ज़मान नियम और समानुपात
सौर अर्धव्यास
सौर अर्धव्यास (solar radius), जिसे \beginR_\odot\end के चिन्ह से दर्शाया जाता है, हमारे सूरज का अर्धव्यास (रेडियस) है जो ६.९५५ x १०५ किलोमीटर के बराबर है। खगोलशास्त्र में, सौर्य अर्धव्यास का तारों के अर्धव्यास बताने के लिए इकाई की तरह इस्तेमाल होता है। अगर किसी तारे का अर्धव्यास हमारे सूरज से बीस गुना है, जो कहा जाएगा के उसका अर्धव्यास २० \beginR_\odot\end है। ज़ाहिर है के सूरज का अपना अर्धव्यास १ \beginR_\odot\end है। .
देखें स्टेफॉन वोल्ज़मान नियम और सौर अर्धव्यास
सूर्य
सूर्य अथवा सूरज सौरमंडल के केन्द्र में स्थित एक तारा जिसके चारों तरफ पृथ्वी और सौरमंडल के अन्य अवयव घूमते हैं। सूर्य हमारे सौर मंडल का सबसे बड़ा पिंड है और उसका व्यास लगभग १३ लाख ९० हज़ार किलोमीटर है जो पृथ्वी से लगभग १०९ गुना अधिक है। ऊर्जा का यह शक्तिशाली भंडार मुख्य रूप से हाइड्रोजन और हीलियम गैसों का एक विशाल गोला है। परमाणु विलय की प्रक्रिया द्वारा सूर्य अपने केंद्र में ऊर्जा पैदा करता है। सूर्य से निकली ऊर्जा का छोटा सा भाग ही पृथ्वी पर पहुँचता है जिसमें से १५ प्रतिशत अंतरिक्ष में परावर्तित हो जाता है, ३० प्रतिशत पानी को भाप बनाने में काम आता है और बहुत सी ऊर्जा पेड़-पौधे समुद्र सोख लेते हैं। इसकी मजबूत गुरुत्वाकर्षण शक्ति विभिन्न कक्षाओं में घूमते हुए पृथ्वी और अन्य ग्रहों को इसकी तरफ खींच कर रखती है। सूर्य से पृथ्वी की औसत दूरी लगभग १४,९६,००,००० किलोमीटर या ९,२९,६०,००० मील है तथा सूर्य से पृथ्वी पर प्रकाश को आने में ८.३ मिनट का समय लगता है। इसी प्रकाशीय ऊर्जा से प्रकाश-संश्लेषण नामक एक महत्वपूर्ण जैव-रासायनिक अभिक्रिया होती है जो पृथ्वी पर जीवन का आधार है। यह पृथ्वी के जलवायु और मौसम को प्रभावित करता है। सूर्य की सतह का निर्माण हाइड्रोजन, हिलियम, लोहा, निकेल, ऑक्सीजन, सिलिकन, सल्फर, मैग्निसियम, कार्बन, नियोन, कैल्सियम, क्रोमियम तत्वों से हुआ है। इनमें से हाइड्रोजन सूर्य के सतह की मात्रा का ७४ % तथा हिलियम २४ % है। इस जलते हुए गैसीय पिंड को दूरदर्शी यंत्र से देखने पर इसकी सतह पर छोटे-बड़े धब्बे दिखलाई पड़ते हैं। इन्हें सौर कलंक कहा जाता है। ये कलंक अपने स्थान से सरकते हुए दिखाई पड़ते हैं। इससे वैज्ञानिकों ने निष्कर्ष निकाला है कि सूर्य पूरब से पश्चिम की ओर २७ दिनों में अपने अक्ष पर एक परिक्रमा करता है। जिस प्रकार पृथ्वी और अन्य ग्रह सूरज की परिक्रमा करते हैं उसी प्रकार सूरज भी आकाश गंगा के केन्द्र की परिक्रमा करता है। इसको परिक्रमा करनें में २२ से २५ करोड़ वर्ष लगते हैं, इसे एक निहारिका वर्ष भी कहते हैं। इसके परिक्रमा करने की गति २५१ किलोमीटर प्रति सेकेंड है। Barnhart, Robert K.
देखें स्टेफॉन वोल्ज़मान नियम और सूर्य
सेल्सियस
सेल्सियस तापमान मापने का एक पैमाना है। इसे सेन्टीग्रेड पैमाना भी कहते हैं। इस पैमाने के अनुसार पानी, सामान्य दबाव पर 0 डिग्री सेल्सियस पर जमता है और 100 डिग्री सेल्सियस पर उबलता है। सेल्सिस विश्व में तापमान के लिये सबसे लोकप्रिय माप है। यह पैमाना दैनिक वातावरणीय तथा अन्य कामों मे काफी प्रयुक्त होता है। अमेरिका व अन्य कई राष्ट्र सेल्सियस की बजाय फ़ारेनहाइट का प्रयोग करते हैं। विश्वभर के लिये मानक इकाई केल्विन है जिसकी स्केल (पैमाना) सेल्सियस से मिलती है। .
देखें स्टेफॉन वोल्ज़मान नियम और सेल्सियस
जूल (इकाई)
जूल (संकेताक्षर: J), अंतर्राष्ट्रीय इकाई प्रणाली के अंतर्गत ऊर्जा या कार्य की एक व्युत्पन्न इकाई है। एक जूल, एक न्यूटन बल को बल की दिशा में, एक मीटर दूरी तक लगाने में, या फिर एक एम्पियर की विद्युत धारा को एक ओम के प्रतिरोध से एक सेकण्ड तक गुजारने में व्यय हुई ऊर्जा या किये गये कार्य के बराबर होता है। इस इकाई को अंग्रेज भौतिक विज्ञानी जेम्स प्रेस्कॉट जूल के नाम पर नामित किया गया है। अन्य एस आई इकाइयों के संदर्भ में: जहां N न्यूटन, m मीटर, kg किलोग्राम, s सेकण्ड, Pa पास्कल और W वाट है। .
देखें स्टेफॉन वोल्ज़मान नियम और जूल (इकाई)
वॉट
वॉट (चिह्न: W) शक्ति की SI व्युत्पन्न इकाई है। यह ऊर्जा के परिवर्तन या रूपान्तरण की दर मापती है। एक वॉट - १ जूल (J) ऊर्जा प्रति सैकण्ड के समकक्ष होती है। यांत्रिक ऊर्जा के संबंध में, एक वॉट उस कार्य को करने की दर होती है, जब एक वस्तु को १ मीटर प्रति सैकण्ड की गति से १ न्यूटन के बल के विरुद्ध ले जाया जाये। पोटेन्शियल डिफरेन्स (वोल्ट) और विद्युत धारा (एम्पीयर) की परिभाषा अनुसार, कार्य १ वॉट की दर से किया गया होता है, जब १ एम्पीयर विद्युत धारा, १ वोल्ट पोटेन्शियल डिफरेन्स पर बहती है। .
देखें स्टेफॉन वोल्ज़मान नियम और वॉट
वीन विस्थापन नियम
300px वीन विस्थापन नियम के अनुसार किसी ताप पर कृष्णिका से तापोत्सर्जन का तरंगदैर्घ्य बंटन भी आरेख में प्रदर्शित तरंगदैर्घ्य के अलावा अन्य किसी ताप पर बंटन अनिवार्य रूप समान आकार का हो। वीन विस्थापन नियम के अनुसार जहाँ λmax शीर्ष तरंगदैर्घ्य है, T कृष्णिका का निरपेक्ष ताप है और b एक अनुक्रमानुपाती नियतांक है जिसे वीन विस्थापन नियतांक कहते हैं, इसका मान (2002 CODATA अनुशंसित मान)। .
देखें स्टेफॉन वोल्ज़मान नियम और वीन विस्थापन नियम
खगोलज्ञ
खगोल शास्त्र के विद्वान को खगोलज्ञ या खगोलशास्त्री कहते हैं। श्रेणी:खागोलशास्त्र.
देखें स्टेफॉन वोल्ज़मान नियम और खगोलज्ञ
क्षेत्रफल
किसी तल (समतल या वक्रतल) के द्वि-बीमीय (द्वि-आयामी) आकार के परिमाण (माप) को क्षेत्रफल कहते हैं। जिस क्षेत्र के क्षेत्रफल की बात की जाती है वह क्षेत्र प्रायः किसी बन्द वक्र (closed curve) से घिरा होता है। इसे प्राय: m2 (वर्ग मीटर) में मापा जाता है। .
देखें स्टेफॉन वोल्ज़मान नियम और क्षेत्रफल
कृष्णिका
जैसे-जैसे तापमान कम होता है, कृष्णिका का विकिरण कर्व कम तीव्रता और लंबे तरंगदैर्घ्य की ओर बढ़ता है। कृष्णिका का विकिरण ग्राफ भी रेले और जीन्स के शास्त्रीय मॉडल के साथ तुलनीय होता है। कृष्णिका का रंग (वार्णिकता) कृष्णिका के तापमान पर निर्भर करता है, जैसे ऐसे रंग का ठिकाने की CIE 1931 एक्स, वाई अंतरिक्ष में यहां दिखाया गया है, जिसे प्लैंकियान लोकस के रूप में जाना जाता है। भौतिक विज्ञान में कृष्णिका पदार्थ की एक आदर्शीकृत अवस्था है, जो अपने ऊपर पड़ने वाले सभी विद्युत चुम्बकीय विकिरण अवशोषित कर लेता है। कृष्णिका एक विशेष और सतत वर्णक्रम (स्पेक्ट्रम) में विकिरण को अवशोषित और गर्म होने पर फिर से उत्सर्जित करते हैं। क्योंकि कोई भी प्रकाश (दृश्य विद्युत चुम्बकीय विकिरण) परिलक्षित या संचरित नहीं होता है और वस्तु जब ठंडी होती है, तो काली दिखाई देती है। हालांकि एक कृष्णिका तापमान पर निर्भर प्रकाश वर्णक्रम का उत्सर्जन करता है। कृष्णिका से निकले इस सौर विकिरण को कृष्णिका विकिरण कहा जाता है। कृष्णिका के वर्णक्रम में तरंग की लंबाई (तरंगदैर्घ्य) जितनी छोटी होती है, आवृत्ति उतनी ही ज्यादा होती है और उच्च आवृत्ति उच्च तापमान से संबंधित होती है। इस प्रकार, एक गर्म वस्तु का रंग वर्णक्रम के नीले अंत के करीब होता है और एक ठंडी वस्तु का रंग लाल के करीब होता है। कमरे के तापमान पर, कृष्णिका ज्यादातर अवरक्त (इंफ्रारेड) तरंगदैर्घ्य फेंकते हैं, लेकिन तापमान के कुछ सौ डिग्री सेल्सियस बढ़ जाने पर कृष्णिका दृश्य तरंगदैर्घ्य उत्सर्जित करते हैं, जो तापमान बढ़ने के साथ ही लाल, नारंगी, पीले, उजले, नीले दिखते हैं। वस्तु के सफेद होने तक वह पर्याप्त मात्रा में पराबैंगनी विकिरण उत्सर्जित करती है। "कृष्णिका" शब्द 1860 मेंगुस्ताव किर्चाफ के द्वारा शुरू किया गया। जब इसका यौगिक विशेषण के रूप में प्रयोग किया जाता है, तो यह शब्द आम तौर पर "कृष्णिका विकिरण" या " ब्लैकबॉडी रेडियेशन" के रूप में एक शब्द में संयुक्त हो जाता है। कृष्णिका उत्सर्जन एक निरंतर जारी रहने वाले क्षेत्र के सौर संतुलनस्थिति की अंतर्दृष्टि प्रदान करता है। शास्त्रीय भौतिकी में सौर संतुलन में प्रत्येक अलग-अलग फूरियर मोड में समान ऊर्जा होनी चाहिए। इस दृष्टिकोण से एक विरोधाभास पैदा हुआ, जिसे पराबैंगनी आपदा के रूप में जाना जाता है और जिसमें सतत जारी रहने वाले क्षेत्र में ऊर्जा की एक अपार मात्रा होती है। कृष्णिका सौर संतुलन के गुणों का परीक्षण कर सकते हैं, क्योंकि वे जो सूर्य की किरणों द्वारा वितरित किये जाने वाले विकिरण उत्सर्जित करते हैं। ऐतिहासिक रूप से कृष्णिका के नियमों का अध्ययन करने से ही क्वांटम यांत्रिकी की अवधारणा आई। .
देखें स्टेफॉन वोल्ज़मान नियम और कृष्णिका
केल्विन
कैल्विन (चिन्ह: K) तापमान की मापन इकाई है। यह सात मूल इकाईयों में से एक है। कैल्विन पैमाना ऊष्मगतिकीय तापमान पैमाना है, जहाँ, परिशुद्ध शून्य, पूर्ण ऊर्जा की सैद्धांतिक अनुपस्थिति है, जिसे शून्य कैल्विन भी कहते हैं। (0 K) कैल्विन पैमाना और कैल्विन के नाम ब्रिटिश भौतिक शास्त्री और अभियाँत्रिक विलियम थामसन, प्रथम बैरन कैल्विन (1824–1907) के नाम पर रखा गया है, जिन्होंने विशुद्ध तापमानमापक पैमाने की आअवश्यकत जतायी थी। .
देखें स्टेफॉन वोल्ज़मान नियम और केल्विन
अन्तरराष्ट्रीय मात्रक प्रणाली
अन्तर्राष्ट्रीय मात्रक प्रणाली (संक्षेप में SI; फ्रेंच Le Système International d'unités का संक्षिप्त रूप), मीटरी पद्धति का आधुनिक रूप है। इसे सामान्य रूप में दशमलव एवं दस के गुणांकों में बनाया गया है। यह विज्ञान एवं वाणिज्य के क्षेत्र में विश्व की सर्वाधिक प्रयोग की जाने वाली प्रणाली है। पुरानी मेट्रिक प्रणाली में कई इकाइयों के समूह प्रयोग किए जाते थे। SI को 1960 में पुरानी मीटर-किलोग्राम-सैकण्ड यानी (MKS) प्रणाली से विकसित किया गया था, बजाय सेंटीमीटर-ग्राम-सैकण्ड प्रणाली की, जिसमें कई कठिनाइयाँ थीं। SI प्रणाली स्थिर नहीं रहती, वरन इसमें निरंतर विकास होते रहते हैं, परंतु इकाइयां अन्तर्राष्ट्रीय समझौतों के द्वारा ही बनाई और बदली जाती हैं। यह प्रणाली लगभग विश्वव्यापक स्तर पर लागू है और अधिकांश देश इसके अलावा अन्य इकाइयों की आधिकारिक परिभाषाएं भी नहीं समझते हैं। परंतु इसके अपवाद संयुक्त राज्य अमरीका और ब्रिटेन हैं, जहाँ अभी भी गैर-SI इकाइयों उनकी पुरानी प्रणालियाँ लागू हैं।भारत मॆं यह प्रणाली 1 अप्रैल, 1957 मॆं लागू हुई। इसके साथ ही यहां नया पैसा भी लागू हुआ, जो कि स्वयं दशमलव प्रणाली पर आधारित था। इस प्रणाली में कई नई नामकरण की गई इकाइयाँ लागू हुई। इस प्रणाली में सात मूल इकाइयाँ (मीटर, किलोग्राम, सैकण्ड, एम्पीयर, कैल्विन, मोल, कैन्डेला, कूलम्ब) और अन्य कई व्युत्पन्न इकाइयाँ हैं। कुछ वैज्ञानिक और सांस्कृतिक क्षेत्रों में एस आई प्रणाली के साथ अन्य इकाइयाँ भी प्रयोग में लाई जाती हैं। SI उपसर्गों के माध्यम से बहुत छोटी और बहुत बड़ी मात्राओं को व्यक्त करने में सरलता होती है। तीन राष्ट्रों ने आधिकारिक रूप से इस प्रणाली को अपनी पूर्ण या प्राथमिक मापन प्रणाली स्वीकार्य नहीं किया है। ये राष्ट्र हैं: लाइबेरिया, म्याँमार और संयुक्त राज्य अमरीका। .
देखें स्टेफॉन वोल्ज़मान नियम और अन्तरराष्ट्रीय मात्रक प्रणाली
उष्मागतिकी
भौतिकी में उष्मागतिकी (उष्मा+गतिकी .
देखें स्टेफॉन वोल्ज़मान नियम और उष्मागतिकी
यह भी देखें
ऊष्मा संचार
- आयतनी उष्मा धारिता
- ऊष्मा
- ऊष्मा अन्तरण
- ऊष्मा अभिगम
- ऊष्मा चालकता
- ऊष्मा चालन
- ऊष्मा रोधन
- ऊष्मा विकिरण
- ऊष्मा विनिमायक
- ऊष्मा समीकरण
- ऊष्मीय संतुलन
- कृष्णिका
- कृष्णिका विकिरण
- कैलोरी
- कैलोरीमिति
- क्वथन
- ग्रासहॉफ़ संख्या
- जल के गुणधर्म
- जलना (चिकित्सा)
- तापीय प्रसार
- दक्षता
- नसेल्ट संख्या
- न्यूटन का शीतलन का नियम
- परिसीमा स्तर
- प्राणिऊष्मा
- संघनित्र (उष्मा स्थानान्तरण)
- स्टेफॉन वोल्ज़मान नियम
- हाईपोथर्मिया
ऊष्मागतिकी के नियम
- ऊर्जा संरक्षण का नियम
- ऊष्मागतिकी का तृतीय नियम
- ऊष्मागतिकी का द्वितीय नियम
- ऊष्मागतिकी का प्रथम नियम
- ऊष्मागतिकी का शून्यवाँ नियम
- ऊष्मागतिकी के सिद्धान्त
- कार्नो प्रमेय
- स्टेफॉन वोल्ज़मान नियम