हम Google Play स्टोर पर Unionpedia ऐप को पुनर्स्थापित करने के लिए काम कर रहे हैं
निवर्तमानआने वाली
🌟हमने बेहतर नेविगेशन के लिए अपने डिज़ाइन को सरल बनाया!
Instagram Facebook X LinkedIn

प्रवणता

सूची प्रवणता

प्रवणता की गणना गणित में किसी सरल रेखा की प्रवणता (Gradient) या 'ढलान' (स्लोप) उसके झुकाव की तीव्रता को सूचित करता है। क्षैतिज रेखा प्रवणता शून्य और उर्ध्वाधर रेखा की प्रवणता 'अनन्त' मानी जाती है। किसी रेखा की प्रवणता का आंकिक मान उसके किसी दो बिन्दुओं के बीच की ऊंचाई (उर्ध्वाधर दूरी) तथा क्षैतिज दूरी के अनुपात के बराबर होती है। जहाँ m रेखा की प्रवणता को सूचित कर रहा है। त्रिकोणमिति की भाषा में किसी रेखा की प्रवणता उसके द्वारा क्षैतिज के साथ बनाये गये कोण के स्पर्शज्या (tan) के बराबर होती है। .

सामग्री की तालिका

  1. 5 संबंधों: त्रिकोणमिति, सरल रेखा, गणित, अनंत, अनुपात

  2. अनुपात
  3. प्राथमिक गणित
  4. वैश्लेषिक ज्यामिति

त्रिकोणमिति

किसी दूरस्थ और सीधे मापन में कठिनाई वाले सर्वेक्षण के लिए समरूप त्रिभुज के उपयोग का उदाहरण (1667) त्रिकोणमिति गणित की वह शाखा है जिसमें त्रिभुज और त्रिभुजों से बनने वाले बहुभुजों का अध्ययन होता है। त्रिकोणमिति का शब्दिक अर्थ है 'त्रिभुज का मापन'। त्रिकोणमिति में सबसे अधिक महत्वपूर्ण है समकोण त्रिभुज का अध्ययन। त्रिभुजों और बहुभुजों की भुजाओं की लम्बाई और दो भुजाओं के बीच के कोणों का अध्ययन करने का मुख्य आधार यह है कि समकोण त्रिभुज की किन्ही दो भुजाओं (आधार, लम्ब व कर्ण) का अनुपात उस त्रिभुज के कोणों के मान पर निर्भर करता है। त्रिकोणमिति का ज्यामिति की प्रसिद्ध बौधायन प्रमेय (पाइथागोरस प्रमेय) से गहरा सम्बन्ध है। .

देखें प्रवणता और त्रिकोणमिति

सरल रेखा

तीन रेखाओं के समीकरण तथा ग्राफ: लाल रेखा तथा नीली रेखा परस्पर समान्तर हैं। सरल रेखा गणित मैं शून्य चौडाई वाला अनन्त लम्बाई वाला एक आदर्श वक्र होता है, यूक्लिडीय ज्यामिति (Euclidean Geometry) के अन्तर्गत दो बिन्दुओ से होकर एक और केवल एक ही रेखा जा सकती है। एक सरल रेखा दो बिदुओ के बीच की लघतुत्तम दूरी प्रदर्शित करती है। सरल रेख बिन्दुओं का सरलतम बिन्दुपथ होता है। किसी द्वी-विमीय समतल पर दो सरल रेखाएं या तो समानान्तर होंगी अथवा प्रतिछेदी। इसी प्रकार त्रिविम में दो रेखाएं परस्पर समानान्तर, प्रतिछेदी या skew (न प्रतिछेदी न ही समानान्तर) हो सकती हें। .

देखें प्रवणता और सरल रेखा

गणित

पुणे में आर्यभट की मूर्ति ४७६-५५० गणित ऐसी विद्याओं का समूह है जो संख्याओं, मात्राओं, परिमाणों, रूपों और उनके आपसी रिश्तों, गुण, स्वभाव इत्यादि का अध्ययन करती हैं। गणित एक अमूर्त या निराकार (abstract) और निगमनात्मक प्रणाली है। गणित की कई शाखाएँ हैं: अंकगणित, रेखागणित, त्रिकोणमिति, सांख्यिकी, बीजगणित, कलन, इत्यादि। गणित में अभ्यस्त व्यक्ति या खोज करने वाले वैज्ञानिक को गणितज्ञ कहते हैं। बीसवीं शताब्दी के प्रख्यात ब्रिटिश गणितज्ञ और दार्शनिक बर्टेंड रसेल के अनुसार ‘‘गणित को एक ऐसे विषय के रूप में परिभाषित किया जा सकता है जिसमें हम जानते ही नहीं कि हम क्या कह रहे हैं, न ही हमें यह पता होता है कि जो हम कह रहे हैं वह सत्य भी है या नहीं।’’ गणित कुछ अमूर्त धारणाओं एवं नियमों का संकलन मात्र ही नहीं है, बल्कि दैनंदिन जीवन का मूलाधार है। .

देखें प्रवणता और गणित

अनंत

अनंत (Infinity) का अर्थ होता है जिसका कोई अंत न हो। इसको ∞ से निरूपित करते हैं। यह गणित और दर्शन में एक कांसेप्ट है जो ऐसी राशि को कहते हैं जिसकी कोई सीमा न हो या अन्त न हो। भूतकाल में लोगों ने अनन्त के बारे में तरह-तरह के विचार व्यक्त किये हैं। अनंत शब्द का अंग्रेजी पर्याय "इनफिनिटी" लैटिन भाषा के 'इन्' (अन्) और 'फिनिस' (अंत) की संधि है। यह शब्द उन राशियों के लिए प्रयुक्त किया जाता है जिनकी भाप अथवा गणना उनके परिमित न रहने के कारण असंभव है। अपरिमित सरल रेखा की लंबाई सीमाविहीन और इसलिए अनंत होती है। .

देखें प्रवणता और अनंत

अनुपात

गणित में अनुपात (रेशियो) समान प्रकार की दो संख्याओं के बीच सम्बन्ध को कहते हैं। प्रायः इसे "a संबंध b" या a:b कहते हैं। उदाहरण के लिये यदि दो पेड़ों की उँचाइयों का अनुपात ३:५ है तो इसका अर्थ यह है कि यदि पहले पेड़ की ऊंचाई ३ मीटर है तो दूसरे की ऊंचाई ५ मीटर होगी। अथवा पहले की उँचाई ९ मीटर हो तो दूसरे की १५ मीटर होगी। श्रेणी:प्रारम्भिक गणित श्रेणी:बीजगणित श्रेणी:चित्र जोड़ें.

देखें प्रवणता और अनुपात

यह भी देखें

अनुपात

प्राथमिक गणित

वैश्लेषिक ज्यामिति