हम Google Play स्टोर पर Unionpedia ऐप को पुनर्स्थापित करने के लिए काम कर रहे हैं
निवर्तमानआने वाली
🌟हमने बेहतर नेविगेशन के लिए अपने डिज़ाइन को सरल बनाया!
Instagram Facebook X LinkedIn

जड़त्वाघूर्ण

सूची जड़त्वाघूर्ण

रस्सी पर करतब दिखाने वाला नट रस्सी पर संतुलन बनाये रखने के लिए एक लम्बी लाठी (रॉड) का प्रयोग करता है। इसके कारण लाठी सहित उसका जडत्वाघूर्ण बहुत अधिक हो जाता है और चलते समय उत्पन्न थोड़े-थोड़े असंतुलित बलों को आसानी से संतुलित कर लेता है। किसी पिण्ड की घूर्णन की दर के परिवर्तन के प्रति प्रतिरोध की माप उस पिण्ड का जड़त्वाघूर्ण (Moment of inertia) कहलाता है। किसी पिण्ड का जड़त्वाघूर्ण उसके आकार-प्रकार एवं उसके अन्दर द्रव्यमान के वितरण की प्रकृति पर निर्भर करता है। स्थानान्तरण गति में जो कार्य द्रव्यमान का है वही कार्य घूर्णन गति में जड़त्वाघूर्ण का होता है। जड़त्वाघूर्ण के प्रतीक के लिये I या कभी-कभी J का प्रयोग किया जाता है। जड़त्वाघूर्ण की अवधारणा का उल्लेख सबसे पहले यूलर (Euler) ने सन् १७३० में अपनी पुस्तक ' Theoria motus corporum solidorum seu rigidorum ' में किया था। .

सामग्री की तालिका

  1. 9 संबंधों: द्रव्यमान, लम्बवत अक्ष का प्रमेय, लियोनार्ड ओइलर, समान्तर अक्ष का प्रमेय, संहति-केन्द्र, जड़त्वाघूर्णों की सूची, घूर्णन, क्षेत्रफल का द्वितीय आघूर्ण, कोणीय संवेग

  2. घूर्णन

द्रव्यमान

द्रव्यमान किसी पदार्थ का वह मूल गुण है, जो उस पदार्थ के त्वरण का विरोध करता है। सरल भाषा में द्रव्यमान से हमें किसी वस्तु का वज़न और गुरुत्वाकर्षण के प्रति उसके आकर्षण या शक्ति का पता चलता है। श्रेणी:भौतिकी श्रेणी:भौतिक शब्दावली *.

देखें जड़त्वाघूर्ण और द्रव्यमान

लम्बवत अक्ष का प्रमेय

यांत्रिकी में लम्बवत अक्ष का प्रमेय (perpendicular axis theorem) जड़त्वाघूर्ण निकालने का एक समीकरण है। यदि किसी पिण्ड का सम्पूर्ण द्रव्यमान केवल किसी एक समतल में स्थित हो तथा इस समतल में स्थित किन्ही दो परस्पर लम्बवत अक्षों के परित: उस पिण्ड का जड़त्वाघूर्ण ज्ञात हो तो इस प्रमेय का उपयोग करके इस समतल के लम्बवत किसी अक्ष के परित: उस पिण्ड का जड़त्वाघूर्ण निकाला जा सकता है। ये तीनों अक्ष उस तल में एकबिन्दुगामी भी होने चाहिये। thumb माना कि X, Y, एवं Z तीन परस्पर लम्बवत अक्ष हैं और बिन्दु O पर मिलते हैं; तथा-.

देखें जड़त्वाघूर्ण और लम्बवत अक्ष का प्रमेय

लियोनार्ड ओइलर

लियोनार्ड ओइलर लियोनार्ड ओइलर (Leonhard Euler; १५ अप्रैल १७०७, बाज़ेल - १८ सितंबर १७८३) एक स्विस गणितज्ञ थे। ये जोहैन बेर्नूली के शिष्य थे। गणित के संकेतों को भी ऑयलर की देन अपूर्व है। इन्होंने संकेतों में अनेक संशोधन करके त्रिकोणमितीय सूत्रों को क्रमबद्ध किया। 1734 ई.

देखें जड़त्वाघूर्ण और लियोनार्ड ओइलर

समान्तर अक्ष का प्रमेय

thumb गति विज्ञान में समान्तर अक्ष का प्रमेय (parallel axis theorem) या स्टीनर का प्रमेय (Steiner's theorem) जड़त्वाघूर्ण से सम्बन्धित एक प्रमेय है। यदि किसी पिण्ड के द्रव्यमान केन्द्र से जाने वाली किसी अक्ष के सापेक्ष उस पिण्ड का जड़त्वाघूर्ण ज्ञात हो तो इस प्रमेय की सहायता से इस अक्ष के समान्तर किसी भी अक्ष के सापेक्ष उस पिण्ड का जड़त्वाघूर्ण निकाला जा सकता है। माना कि: Icm पिण्ड के द्रव्यमान केन्द्र से जाने वाली किसी अक्ष के सापेक्ष जड़त्वाघूर्ण है, M पिण्ड का द्रव्यमान है तथा d नये एवं पुराने (दिये हुए) अक्षों के बीच की लम्बवत दूरी है तो नये अक्ष z के परित: पिण्ड का जड़त्वाघूर्ण निम्नलिखित समीकरण की सहायता से पाया जा सकता है-: इस समीकरण का उपयोग स्ट्रेच नियम (stretch rule) तथा लम्बवत अक्ष का प्रमेय (perpendicular axis theorem) के साथ करके अनेकानेक स्थितियों में जड़त्वाघूर्ण की गणना की जा सकती है। क्षेत्राघूर्ण (area moment of inertia) के परिकलन के लिये समान्तर अक्षों के प्रमेय का उपयोग समान्तर अक्ष के प्रमेय का प्रयोग किसी समतल क्षेत्र D का क्षेत्राघूर्ण निकालने के लिये भी किया जा सकता है।: .

देखें जड़त्वाघूर्ण और समान्तर अक्ष का प्रमेय

संहति-केन्द्र

अलग-अलग द्रव्यमान वाली चार गेंदों के निकाय का '''संहति-केन्द्र भौतिकी में, संहतियों के किसी वितरण का संहति-केंद्र (center of mass) वह बिन्दु है जिस पर वह सारी संहतियाँ केन्द्रीभूत मानी जा सकती हैं। संहति केन्द्र के कुछ विशेष गुण हैं, उदाहरण के लिये यदि किसी वस्तु पर कोई बल लगाया जाय जिसकी क्रियारेखा उस वस्तु के संहति-केन्द्र से होकर जाती हो तो उस वस्तु में केवल स्थानातरण गति होगी (घूर्णी गति नहीं)। संहति-केन्द्र के सापेक्ष उस वस्तु में निहित सभी संहतियों के आघूर्णों (मोमेण्ट) का योग शून्य होता है। दूसरे शब्दों में, संहति-केन्द्र के सापेक्ष, सभी संहतियों की स्थिति का भारित औसत (वेटेड एवरेज) शून्य होता है। कणों के किसी निकाय का संहति केन्द्र वह बिन्दु है जहाँ, अधिकांश उद्देश्यों के लिए, निकाय ऐसे गति करता है जैसे निकाय का सब द्रव्यमान उस बिन्दु पर संकेंद्रित हो। संहति केन्द्र, केवल निकाय के कणों के स्थिति-सदिश और द्रव्यमान पर निर्भर होता है। संहति केन्द्र पर वास्तविक पदार्थ होना अनिवार्य नहीं है (जैसे, एक खोखले गोले का संहति-केन्द्र उस गोले के केन्द्र पर होता है जहाँ कोई द्रव्यमान ही नहीं है)। गुरुत्वाकर्षण क्षेत्र के एकसमान होने की स्थिति में कभी-कभी इसे गलती से गुरुत्वाकर्षण केन्द्र भी कहा जाता है। किसी वस्तु का रेखागणितीय केन्द्र, द्रव्यमान केन्द्र तथा गुरुत्व केन्द्र अलग-अलग हो सकते हैं। संवेग-केन्द्रीय निर्देश तंत्र वह निर्देश तंत्र है जिसमें निकाय का द्रव्यमान केन्द्र स्थिर है। यह एक जड़त्वीय फ्रेम है। एक द्रव्यमान-केन्द्रीय निर्देश तंत्र वह तंत्र है जहाँ द्रव्यमान केन्द्र न केवल स्थिर है बल्कि निर्देशांक निकाय के मूल बिन्दु पर स्थित है। .

देखें जड़त्वाघूर्ण और संहति-केन्द्र

जड़त्वाघूर्णों की सूची

यहाँ पर विभिन्न आकार-प्रकार के पिण्डों के जड़त्वाघूर्ण दिये गये हैं। ज। दत्वाघूर्ण की इकाई की विमा द्रव्यमान × लम्बाई2 होती है। नीचे दिये गये व्यंजकों की गणना में यह माना गया है कि घनत्व सर्वत्र समान है। टिप्पणी: जहाँ कहीं भी अलग से न कहा गया हो, यह माना गया है कि घूर्णन-अक्ष द्रव्यमान केन्द्र से जाता है। .

देखें जड़त्वाघूर्ण और जड़त्वाघूर्णों की सूची

घूर्णन

अक्ष पर घूर्णन करती हुई पृथ्वी घूर्णन करते हुए तीन छल्ले भौतिकी में किसी त्रिआयामी वस्तु के एक स्थान में रहते हुए (लट्टू की तरह) घूमने को घूर्णन (rotation) कहते हैं। यदि एक काल्पनिक रेखा उस वस्तु के बीच में खींची जाए जिसके इर्द-गिर्द वस्तु चक्कर खा रही है तो उस रेखा को घूर्णन अक्ष कहा जाता है। पृथ्वी अपने अक्ष पर घूर्णन करती है। .

देखें जड़त्वाघूर्ण और घूर्णन

क्षेत्रफल का द्वितीय आघूर्ण

क्षेत्रफल का द्वितीय आघूर्ण (second moment of area) किसी क्षेत्र का एक ज्यामितीय गुण है जो यह दर्शाता है कि उस क्षेत्र के बिन्दु किसी अक्ष के सापेक्ष किस प्रकार की स्थिति में हैं। इसे प्रायः I या J से निरूपित करते हैं। इसकी विमा, L4 है। संरचना इंजीनियरी के क्षेत्र में क्षेत्रफल के द्वितीय आघूर्ण का बहुत उपयोग होता है। किसी धरन (बीम) के अनुप्रस्थ काट के क्षेत्रफल का द्वितीय आघूर्ण उस धरन की एक महत्वपूर्ण गुण है जो लोड के कारण उस बीम के विक्षेप (deflection) के परिकलन में प्रयुक्त होता है। .

देखें जड़त्वाघूर्ण और क्षेत्रफल का द्वितीय आघूर्ण

कोणीय संवेग

भौतिक विज्ञान में कोणीय संवेग (Angular momentum), संवेग आघूर्ण (moment of momentum) या घूर्णी संवेग (rotational momentum) किसी वस्तु के द्रव्यमान, आकृति और वेग को ध्यान में रखते हुए इसके घूर्णन का मान का मापन है। यह एक सदिश राशि है जो किसी विशेष अक्ष के सापेक्ष जड़त्वाघूर्ण व कोणीय वेग के गुणा के बराबर होता है। किसी कणों के निकाय (उदाहरणार्थ: दृढ़ पिण्ड) का कोणीय संवेग उस निकाय में उपस्थित सभी कणों के कोणीय संवेग के योग के तुल्य होता है। .

देखें जड़त्वाघूर्ण और कोणीय संवेग

यह भी देखें

घूर्णन

जड़त्व आघूर्ण के रूप में भी जाना जाता है।