लोगो
यूनियनपीडिया
संचार
Google Play पर पाएं
नई! अपने एंड्रॉयड डिवाइस पर डाउनलोड यूनियनपीडिया!
इंस्टॉल करें
ब्राउज़र की तुलना में तेजी से पहुँच!
 

आंशिक अवकल समीकरण

सूची आंशिक अवकल समीकरण

गणित में आंशिक अवकल समीकरण वो अवकल समीकरणें होती हैं जिनमें बहुचर फलन और उनके आंशिक अवकल होते हैं। (यह साधारण अवकल समीकरणों से भिन्न है जिनमें एक ही चर और उसके अवकलों में बंटा हुआ होता है। आंशिक अवकल समीकरणों का उपयोग उन समस्याओं को हल करने में प्रयुक्त किया जाता है जो विभिन्न स्वतंत्र चरों की फलन होती हैं एवं जिन्हें साधारणतया हल कर सकते हैं अथवा हल करने के लिए अभिकलित्र प्रोग्राम बनाया जा सके। आंशिक अवकल समीकरणो का उपयोग विभिन्न दृष्टिगत घटनाओं यथा ध्वनि, ऊष्मा, स्थिरवैद्युतिकी, विद्युत-गतिकी, द्रव का प्रवाह, प्रत्यास्थता या प्रमात्रा यान्त्रिकी को समझने में किया जा सकता है। ये पृथक प्रतीत होने वाली प्रक्रियाओं को आंशिक अवकल समीकरणों के रूप में सूत्रित किया जा सकता है। .

15 संबंधों: ऊष्मा समीकरण, दालाँवेयर, परिमित अवयव सॉफ्टवेयरों की सूची, परिमित अवयव विधि, पियेर सिमों लाप्लास, प्वासों समीकरण, फुरिअर विश्लेषण, समीकरण, साधारण अवकल समीकरण, सुपरिभाषित, विसरण समीकरण, गणितीय भौतिकी, कौशी समस्या, कौशी संवेग समीकरण, अवकल समीकरण

ऊष्मा समीकरण

उष्मा समीकरण (heat equation) महत्वपूर्ण आंशिक अवकल समीकरण है जो किसी वस्तु के किसी क्षेत्र में समय के साथ ताप की स्थिति बताता है। तीन स्पेस चरों (x,y,z) एवं समय t के किसी फलन u(x,y,z,t) के लिये उष्मा समीकरण निम्नवत है: ऐसे भी लिखा जाता है या कभी कभी .

नई!!: आंशिक अवकल समीकरण और ऊष्मा समीकरण · और देखें »

दालाँवेयर

फ्रांसीसी गणितज्ञ दालाँवेयर दालाँवेयर (Jean-Baptiste le Rond d'Alembert; फ्रांसीसी उच्चारण:; १७१७-१७८३ ई.) फ्रांसीसी गणितज्ञ थे। इनका जन्म पेरिस में हुआ। २४ वर्षं की आयु में ही इनको पैरिस की विज्ञान अकादमी में प्रवेश मिला गया और १७५४ ई. में ये अकादमी के स्थायी मंत्री बना दिए गए। १७४३ ई. में दालाँवेयर के सिद्धांत (अर्थात्, निहित और फलवत् बल तुल्य होते हैं) पर आधारित इनकी पुस्तक 'त्रेते द दिनामिक' (Traite' de dynamique) प्रकाशित हुई। इसमें 'गति के नियम' और उनपर आश्रित विचारों को अत्यधिक व्यापक रूप में वैश्लेषिक भाषा में प्रदर्शित किया गया है। दालाँवेयर ने इस सिद्धांत का प्रयोग १७४४ ई. में तरलों के साम्य और उनकी गति की दशाओं का तथा १७४६ ई. प्रकंपित रज्जु (vibrating string) एवं विषुवों की अग्रगति (precession of the equinoxes) के निर्मेयों को हल करने में किया। इन अन्वेषणों के मध्य इनके समक्ष अनेक आंशिक अवकल समीकरण आए, जिनको इन्हें हल करना पड़ा। इस कार्य से दालाँवेयर तत्कालीन आंशिक अवकल समीकरणवेत्ताओं में अग्रगण्य हो गए। श्रेणी:गणितज्ञ.

नई!!: आंशिक अवकल समीकरण और दालाँवेयर · और देखें »

परिमित अवयव सॉफ्टवेयरों की सूची

यहाँ उन सॉफ्तवेयरों की सूची दी गयी है जो आंशिक अवकल समीकरणों का हल निकालने के लिए परिमित अवयव विधि का उपयोग करते हैं। .

नई!!: आंशिक अवकल समीकरण और परिमित अवयव सॉफ्टवेयरों की सूची · और देखें »

परिमित अवयव विधि

गणित में परिमित अवयव विधि (finite element method या FEM) बाउण्ड्री वैल्यू समस्याओं के सन्निकट हल प्राप्त करने की एक संख्यात्मक तकनीक है। यह विधि वैरिएशनल विधि का उपयोग करके एक त्रुटि फलन को न्यूनीकृत करती है जिससे स्थायी (stable) हल प्राप्त होता है। जिस प्रकार छोटी-छोटी सीधी रेखाओं को जोड़कर एक बड़ा वृत्त बनाने की कल्पना की जा सकती है उसी प्रकार FEM में बड़े आयतन या बड़े क्षेत्रफल को छोटे-छोटे टुकड़ों (finite elements) में बाँट दिया जाता है और इन परिमित अववयों के लिए समस्या से सम्बन्धित समीकरण (जैसे बलों के संतुलन के समीकरण, ऊष्मा के समीकरण आदि) लिखे जाते हैं। इन सभी समीकरणों (जिनकी संख्या प्रायः बहुत अधिक होती है) को एकसाथ (simultaneously) हल किया जाता है। परिमित अवयव विधि द्वारा आजकल अनेकों क्षेत्रों की समस्याओं का हल निकाला जाता है, जैसे - ढाँचों का स्थायित्व, वस्तुओं के अन्दर ताप का वितरण, विद्युत क्षेत्र का वितरण, चुम्बकीय क्षेत्र का वितरण, द्रवों का प्रवाह आदि। .

नई!!: आंशिक अवकल समीकरण और परिमित अवयव विधि · और देखें »

पियेर सिमों लाप्लास

पियेर सिमों लाप्लास पियेर सिमों लाप्लास (Pierre Simon Laplace, १७४९ ई. - १८२७ ई.) फ्रांसीसी गणितज्ञ, भौतिकशास्त्री तथा खगोलविद थे। लाप्लास का जन्म २८ मार्च १७४९ ई., को एक दरिद्र किसान के परिवार में हुआ। इनकी शिक्षा धनी पड़ोसियों की सहायता से हुई। .

नई!!: आंशिक अवकल समीकरण और पियेर सिमों लाप्लास · और देखें »

प्वासों समीकरण

गणित में, प्वासों समीकरण (Poisson's equation) एक आंशिक अवकल समीकरण (partial differential equation) है। यह दीर्घवृत्तीय आंशिक अवकल समीकरण है जो विद्युतस्थैतिकी, यांत्रिक इंजीनिररी तथा सैद्धांतिक भौतिकी में बहुत प्रयुक्त होता है। इसका यह नाम फ्रांसीसी गणितज्ञ तथा भौतिकशास्त्री साइमन डेनिस प्वासों (Siméon-Denis Poisson) के नाम पर रखा गया है। त्रिबीमीय कार्तीय निर्देशांकों में प्वासों के समीकरण का स्वरूप निम्नलिखित है- \left(\frac + \frac + \frac \right)\varphi(x,y,z) .

नई!!: आंशिक अवकल समीकरण और प्वासों समीकरण · और देखें »

फुरिअर विश्लेषण

विज्ञान एवं प्रौद्योगिकी में किसी फलन (फंक्शन) को छोटे-छोटे सरल फलनों के योग के रूप में व्यक्त करने को विश्लेषण कहा जाता है एवं इसकी उल्टी प्रक्रिया को संश्लेषण कहते हैं। हमें ज्ञात है कि फुरिअर श्रेणी के प्रयोग से किसी भी आवर्ती फलन को उचित आयाम, आवृत्ति एवं कला की साइन तरंगो (sine waves) के योग के रूप मे व्यक्त करना सम्भव है। इसके सामान्यीकरण के रूप में यह भी कह सकते हैं किं किसी भी समय के साथ परिवर्तनशील संकेत को उचित आयाम, आवृत्ति एवं कला की साइन तरंगो (sine waves) के योग के रूप में व्यक्त करना सम्भव है। फुरिअर विश्लेषण (Fourier analysis) वह तकनीक है जिसका प्रयोग करके बताया जा सकता है कि कोई संकेत (सिग्नल) किन साइन तरंगों से मिलकर बना हुआ है। फलनों (या अन्य वस्तुओं) को सरल टुकड़ों में तोडकर समझने का प्रयास फुरिअर विश्लेषण का सार है। आजकल फुरिअर विश्लेषण का विस्तार होकर यह एक अधिक सामान्य हार्मोनिक विश्लेषण के अंग के रूप में जाना जाने लगा है। .

नई!!: आंशिक अवकल समीकरण और फुरिअर विश्लेषण · और देखें »

समीकरण

---- समीकरण (equation) प्रतीकों की सहायता से व्यक्त किया गया एक गणितीय कथन है जो दो वस्तुओं को समान अथवा तुल्य बताता है। यह कहना अतिशयोक्ति नहीं होगी कि आधुनिक गणित में समीकरण सर्वाधिक महत्वपूर्ण विषय है। आधुनिक विज्ञान एवं तकनीकी में विभिन्न घटनाओं (फेनामेना) एवं प्रक्रियाओं का गणितीय मॉडल बनाने में समीकरण ही आधारका काम करने हैं। समीकरण लिखने में समता चिन्ह का प्रयोग किया जाता है। यथा- समीकरण प्राय: दो या दो से अधिक व्यंजकों (expressions) की समानता को दर्शाने के लिये प्रयुक्त होते हैं। किसी समीकरण में एक या एक से अधिक चर राशि (यां) (variables) होती हैं। चर राशि के जिस मान के लिये समीकरण के दोनो पक्ष बराबर हो जाते हैं, वह/वे मान समीकरण का हल या समीकरण का मूल (roots of the equation) कहलाता/कहलाते है। ऐसा समीकरण जो चर राशि के सभी मानों के लिये संतुष्ट होता है, उसे सर्वसमिका (identity) कहते हैं। जैसे - एक सर्वसमिका है। जबकि एक समीकरण है जिसका मूल हैं x.

नई!!: आंशिक अवकल समीकरण और समीकरण · और देखें »

साधारण अवकल समीकरण

गणित में साधारण अवकल समीकरण (ordinary differential equation या ODE) उन अवकल समीकरणों को कहते हैं जिसमें केवल एक स्वतंत्र चर तथा उसके अवकलज मौजूद हों। .

नई!!: आंशिक अवकल समीकरण और साधारण अवकल समीकरण · और देखें »

सुपरिभाषित

गणित में, किसी कथन को सुपरिभाषित कहा जाता है यदि यह स्पष्ट है और इसके अवयव इसके निरूपण से स्वतंत्र होते हैं। अधिक सरल शब्दों में, इसका मतलब यह है कि एक गणितीय कथन प्रत्यक्ष और स्पष्ट हो। विशेष रूप से, एक फलन सुपरिभाषित कहलाता है यदि इसके निविष्ट में बदलाव किये बिना इसके रूप में परिवर्तन (जिस रूप में यह प्रस्तुत किया जाता है) करने पर यह समान परिणाम देता है। एक सुपरिभाषित फलन 0.5 के लिए वही परिणाम देता है जो 1/2 के लिए देता है। शब्द सुपरिभाषित को एक तार्किक कथन के स्पष्ट के लिए भी काम में लिया जाता था और आंशिक अवकल समीकरण को सुपरिभाषित कहा जाता है यदि यह सीमाओं पर सतत है। .

नई!!: आंशिक अवकल समीकरण और सुपरिभाषित · और देखें »

विसरण समीकरण

विसरण समीकरण एक आंशिक अवकल समीकरण है जो विसरण में प्रयुक्त पदार्थों के घनत्व गतिकी को वर्णित करती है। इस समीकरण को विसरण-सदृश व्यवहार करने वाली प्रक्रियाओं के लिए भी प्रयुक्त किया जाता है। .

नई!!: आंशिक अवकल समीकरण और विसरण समीकरण · और देखें »

गणितीय भौतिकी

गणितीय भौतिकी (Mathematical physics) भौतिकी की समस्याओं के समाधान के लिये गणितीय विधियों के विकास से संबन्धित है। 'गणितीय भौतिकी पत्रिका' (Journal of Mathematical Physics) इस विषय इस तरह परिभाषित करती है- .

नई!!: आंशिक अवकल समीकरण और गणितीय भौतिकी · और देखें »

कौशी समस्या

कौशी समस्या गणित में उन आंशिक अवकल समीकरणों के हल से सम्बंधित है जो कुछ शर्तों का पालन करती हैं जो प्रांत के ऊनविम पृष्‍ठ पर दिए गये हैं। कौशी समस्या एक प्रारंभिक मान समस्या अथवा एक परिसीमा मान समस्या (इसके लिए कौशी परिसीमा प्रतिबंध देखें।) हो सकती है लेकिन यह इनमें से कोई भी नहीं है। इसका नामकरण ऑगस्टिन लुइस कौशी के नाम से किया गया। माना Rn पर एक आंशिक अवकल समीकरण परिभाषित की जाती है और माना n − 1 विमा का एक मसृण प्रसमष्‍टि S ⊂ Rn है (S को कौशी फलक भी कहते हैं)। तब कौशी समस्या द्वारा अवकल समीकरण का हल u ज्ञात किया जाता है जो निम्न समीकरण को सन्तुष्ट करता है: जहाँ f_k, S (जिसे समस्या के लिए एकत्र रूप से कौशी डाटा के नाम से भी जाना जाता है) पर परिभाषित फलन है, n, S पर अभिलंब सदिश सदिश है और κ अवकल समीकरण की कोटि को दर्शाता है। कौशी–कोवलेस्किआ प्रमेय के अनुसार कुछ प्रतिबन्धों के अन्तर्गत कौशी समस्या का हल अद्वितीय होता है, जिनमें से महत्वपूर्ण यह है कि कौशी डाटा और आंशिक अवकल समीकरण के गुणांक वास्तविक विश्लेषी फलन होते हैं। .

नई!!: आंशिक अवकल समीकरण और कौशी समस्या · और देखें »

कौशी संवेग समीकरण

कौशी स्ंवेग समीकराण् अथवा, पदार्थ व्युत्पन्न से व्याख्या करने पर, जहाँ \rho सांतत्यक का घनत्व, \boldsymbol प्रतिबल प्रदिश है और \mathbf पिण्ड के इकाई आयतन पर कार्यरत सभी बलों के का संयोजन है (सामान्यत: घनत्व और गुरुत्व)। \mathbf वेग सदिश क्षेत्र है जो दिक्-काल पर निर्भर करता है। प्रतिबल प्रदिश कभी-कभी दाब और विचलनात्मक प्रतिबल प्रदिश में विपाटित हो जाता है: जहाँ \scriptstyle \mathbb, \scriptstyle 3 \times 3 की तत्समक आव्यूह (ईकाई आव्यूह) है और \scriptstyle \mathbb विचलनात्मक प्रतिबल प्रदिश। प्रतिबल प्रदिश का अपसरण निम्न प्रकार लिखा जा सकता है सभी अनापेक्षिक संवेग संरक्षण समीकरण, जैसे नेवियर-स्टोक्स समीकरण, को कौशी संवेग समीकरण और संघटक सम्बंध द्वारा प्रतिबल प्रदिश को निर्दिष्ट करते हुए व्युत्पित किया जा सकता है। .

नई!!: आंशिक अवकल समीकरण और कौशी संवेग समीकरण · और देखें »

अवकल समीकरण

अवकल समीकरण (डिफरेंशियल ईक्वेशंस) उन संबंधों को कहते हैं जिनमें स्वतंत्र चर तथा अज्ञात परतंत्र चर के साथ-साथ उस परतंत्र चर के एक या अधिक अवकल गुणांक (डिफ़रेंशियल कोइफ़िशेंट्स) हों। यदि इसमें एक परतंत्र चर तथा एक ही स्वतंत्र चर भी हो तो संबंध को साधारण (ऑर्डिनरी) अवकल समीकरण कहते हैं। जब परतंत्र चल तो एक परंतु स्वतंत्र चर अनेक हों तो परतंत्र चर के खंडावकल गुणक (partial differentials) होते हैं। जब ये उपस्थित रहते हैं तब संबंध को आंशिक (पार्शियल) अवकल समीकरण कहते हैं। परतंत्र चर को स्वतंत्र चर के पर्दो में व्यंजित करने को अवकल समीकरण का हल करना कहा जाता है। यदि अवकल समीकरण में nवीं कक्षा (ऑर्डर) का अवकल गुणक हो और अधिक का नहीं, तो अवकल समीकरण nवीं कक्षा का कहलाता है। उच्चतम कक्षा के अवकल गुणक का घात (पॉवर) ही अवकल समीकरण का घात कहलाता है। घात ज्ञात करने के पहले समीकरण को भिन्न तथा करणी चिंहों से इस प्रकार मुक्त कर लेना चाहिए कि उसमें अवकल गुणकों पर कोई भिन्नात्मक घात न हो। अवकल समीकरण का अनुकलन सरल नहीं है। अभी तक प्रथम कक्षा के वे अवकल समीकरण भी पूर्ण रूप से हल नहीं हो पाए हैं। कुछ अवस्थाओं में अनुकलन संभव हैं, जिनका ज्ञान इस विषय की भिन्न-भिन्न पुस्तकों से प्राप्त हो सकता है। अनुकलन करने की विधियाँ सांकेतिक रूप में यहाँ दी जाती हैं। प्रयुक्त गणित, भौतिक विज्ञान तथा विज्ञान की अन्य शाखाओं में भौतिक राशियों को समय, स्थान, ताप इत्यादि स्वतंत्र चलों के फलनों में तुरंत प्रकट करना प्राय: कठिन हो जाता है। परंतु हम उनकी वृद्धि की दर तथा उसके अवकल गुणकों में कोई संबंध बहुधा बड़ी सुगमता से पा सकते हैं। इस प्रकार ऐसे अवकल समीकरण प्राप्त होते हैं जिन्हें पूर्वोक्त राशियाँ संतुष्ट करती हैं। इन्हें हल करना उन राशियों का ज्ञान प्राप्त करने के लिए आवश्यक होता है। इसलिए विज्ञान की उन्नति बहुत अंश तक अवकल समीकरण की प्रगति पर निर्भर है। .

नई!!: आंशिक अवकल समीकरण और अवकल समीकरण · और देखें »

निवर्तमानआने वाली
अरे! अब हम फेसबुक पर हैं! »