लोगो
यूनियनपीडिया
संचार
Google Play पर पाएं
नई! अपने एंड्रॉयड डिवाइस पर डाउनलोड यूनियनपीडिया!
मुक्त
ब्राउज़र की तुलना में तेजी से पहुँच!
 

अनुप्रयुक्त भौतिकी

सूची अनुप्रयुक्त भौतिकी

भौतिकी के तकनीकी और व्यावहारिक अनुप्रयोगों से सम्बंधित विषयों के विज्ञान को अनुप्रयुक्त भौतिकी (अप्लायड फिजिक्स) कहते हैं। सैद्धांतिक भौतिकी और अनुप्रयुक्त भौतिकी के बीच की सीमाओं को किसी वैज्ञानिक की अभिप्रेरणा और अभिप्राय जैसे तत्त्वों से लेकर किसी अनुसन्धान के प्रोधयोगिकी और विज्ञान पर अंततः पड़ने वाले असर तक जा सकता है। अभियाँत्रिकी से इसमें अन्तर केवल इतना है कि, जहाँ अभियाँत्रिकी में विद्यमान तकनीकों पर आधारित ठोस अंत परिणाम की अपेक्षा की जाती है, व्यावहारिक भौतिकी मे नये तकनीकों पर, या विद्यमान तकनीकों पर, अनुसंधान होता है। काफी हद तक यह अनुप्रयुक्त गणित के समान है। भौतिक विज्ञानी भौतिकी के सिद्धांतों का प्रयोग सैद्धांतिक भौतिकी के विकास हेतु यंत्रों को बनाने के लिये भी करते हैं। इसका उदाहरण है त्वरक भौतिकी। .

22 संबंधों: चिकित्सा भौतिकी, तरल गतिकी, त्वरक भौतिकी, ध्वनिकी, नैनोप्रौद्योगिकी, परमाण्विक बल सूक्ष्मदर्शी यंत्र, प्राक्षेपिकी, प्रकाशिकी, प्लाज़्मा (भौतिकी), भौतिक शास्त्र, भूभौतिकी, लेसर किरण, जैवभौतिकी, विज्ञान, व्यावहारिक गणित, अतिचालकता, अनुरूप एलेक्ट्रॉनिकी, अभियान्त्रिकी, अभिकलनात्मक भौतिकी, अर्धचालक भौतिकी और यंत्र, अविनाशी परीक्षण, अंकीय इलेक्ट्रॉनिकी

चिकित्सा भौतिकी

चुम्बकीय अनुनाद चित्रण (एमआरआई) का का पुनरावलोकन चिकित्सा भौतिकी (Medical physics) के अन्तर्गत भौतिकी के सिद्धान्तों का चिकित्सा के क्षेत्र में अनुप्रयोगों का अध्ययन किया जाता है। प्राय: इसमें चिकित्सीय चित्रण (medical imaging) एवं रेडियोचिकित्सा (radiotherapy) आती है। .

नई!!: अनुप्रयुक्त भौतिकी और चिकित्सा भौतिकी · और देखें »

तरल गतिकी

तरल गतिकी तरल यांत्रिकी की एक शाखा है। इसका प्रयोग गतिशील तरलों (द्रव तथा गैस) की प्रकृति तथा उस पर लगने वाले बलों के आकलन के लिए किया जाता है। जटिल तरल गतिकी के सवालों के हल के लिए गणकीय तरलगतिकी का प्रयोग होता है जिसमें संगणकों के सहारे तरल समीकरणों का संख्यात्मक हल किया जाता है। तरलगतिकी का मूल समीकरण सातत्य समीकरण (equation of continuity) कहलाता है जो निम्न प्रकार से लिखा जाता है- तरल गतिकी में प्रयुक्त गणितीय समीकरणों में नेवियर स्टोक्स समीकरण सबसे सामान्य (generalised) रूप है। इसके सरलीकृत रूपों को कई नामों से जाना जाता है। तरलों का बलों के प्रति आचरण उनके घनत्व, श्यानता तथा अन्य गुणों पर निर्भर करता है। यदि द्रव की श्यानता बहुत कम हो तो घर्षण बलों को नगण्य मानते हुए छोड़ा जा सकता है। इस प्रकार प्राप्त समीकरण यूलर का समीकरण कहलाता है जो इस प्रकार है- .

नई!!: अनुप्रयुक्त भौतिकी और तरल गतिकी · और देखें »

त्वरक भौतिकी

त्वरक भौतिकी (Accelerator physics), अनुप्रयुक्त भौतिकी की एक शाखा है जिसका सम्बन्ध कण त्वरकों के डिजाइन, निर्माण एवं प्रचालन से है। त्वरक भौतिकी को आपेक्षिकीय आवेशित कणों (relativistic charged particle) के पुंज की गति का अध्ययन करने वाला, गति बदलने, तथा उनका प्रेक्षण करने वाला भौतिकी कह सकते हैं। गति बदलने के अन्तर्गत त्वरण (वेग बढ़ाना), गति की दिशा बदलना, फोकस करना आदि आते हैं। .

नई!!: अनुप्रयुक्त भौतिकी और त्वरक भौतिकी · और देखें »

ध्वनिकी

सिरिया में बसरा स्थित रोमकालीन नाट्यशाला: ध्वनिकी के सिद्धान्तों का प्राचीन काल से ही उपयोग होता आ रहा है। ध्वनिकी (Acoustics) भौतिकी की वह शाखा है जिसके अन्तर्गत ध्वनि तरंगो, अपश्रव्य तरंगों एवं पराश्रव्य तरंगों सहित ठोस, द्रव एवं गैसों में संचारित होने वाली सभी प्रकार की यांत्रिक तरंगों का अध्ययन किया जाता है। ध्वनि की उत्पत्ति द्रव्यपिंडों के दोलन द्वारा होती है। इस दोलन से वायु की दाब एवं घनत्व में प्रत्यावर्ती (alternating) परिर्वतन होने लगते हैं, जो अपने स्रोत से एक विशेष वेग के साथ आगे बढ़ते हैं। इनको ही ध्वनि की तरंग कहा जाता है। जब ये तरंगें कान के परदे से टकराती हैं, तब ध्वनि-संवेदन होता है। इन तरंगों की विशेषता यह है कि इनमें परावर्तन, अपवर्तन (refraction) तथा विवर्तन (diffraction) हो सकता है। प्रति सेकंड दोलन संख्या को आवृति (frequency) कहते हैं। मनुष्य का कान एक सीमित परास की आवृतियों को ही सुन सकता है, किंतु आजकल ऐसी तरंगें भी उत्पन्न की जा सकती है जिसका कान के परदे पर कोई असर नहीं होता। कान की सीमा से अधिक परास की आवृतियों की ध्वनि को पराश्रव्य तरंगें कहते हैं। बहुत से जानवर, जैसे चमगादड़, पराश्रव्य ध्वनि सुन सकते हैं। आधुनिक समय में श्रव्य तथा पराश्रव्य दोनों प्रकार की ध्वनियों की आवृतियों को एक बड़ी सीमा के भीतर उत्पन्न किया, पहचाना और मापा जा सकता है। .

नई!!: अनुप्रयुक्त भौतिकी और ध्वनिकी · और देखें »

नैनोप्रौद्योगिकी

नैनोतकनीक या नैनोप्रौद्योगिकी, व्यावहारिक विज्ञान के क्षेत्र में, १ से १०० नैनो (अर्थात 10−9 m) स्केल में प्रयुक्त और अध्ययन की जाने वाली सभी तकनीकों और सम्बन्धित विज्ञान का समूह है। नैनोतकनीक में इस सीमा के अन्दर जालसाजी के लिये विस्तृत रूप में अंतर-अनुशासनात्मक क्षेत्रों, जैसे व्यावहारिक भौतिकी, पदार्थ विज्ञान, अर्धचालक भौतिकी, विशाल अणुकणिका रसायन शास्त्र (जो रासायन शास्त्र के क्षेत्र में अणुओं के गैर कोवलेन्त प्रभाव पर केन्द्रित है), स्वयमानुलिपिक मशीनएं और रोबोटिक्स, रसायनिक अभियांत्रिकी, याँत्रिक अभियाँत्रिकी और वैद्युत अभियाँत्रिकी.

नई!!: अनुप्रयुक्त भौतिकी और नैनोप्रौद्योगिकी · और देखें »

परमाण्विक बल सूक्ष्मदर्शी यंत्र

स्थलाकृतिक प्रतिबिंब परमाण्विक बल सूक्ष्मदर्शी यंत्र (atomic force microscope, AFM), जिसे क्रमवीक्षण बल सूक्ष्मदर्शी यंत्र (scanning force microscope, SFM) भी कहा जाता है, एक अति-विभेदनशील यंत्र है, जो नैनोमीटर के अंशों से भी सूक्ष्म स्तर तक दिखा सकता है, जो कि प्रकाशिक सूक्ष्मदर्शीओं की तुलना में १००० गुना बेहतर हैं। प्रकाशिक सूक्ष्मदर्शी उनकी विवर्तन सीमा से सीमित हो जाते हैं। इन्हे अगुआ किया गर्ड बिन्निग और हैन्रिक रोह्रर के बनाये अवलोकन टनलिंग सूक्ष्मदर्शी यंत्र (STM) नें, जिसके लिये उन्हे १९८६ में नोबेल पुरस्कार से सम्मानित किया गया। बिन्निग, कैल्विन केट और क्रिस्टॉफ गर्बर नें १९८६ में पहले AFM का विकास किया। आज नैनो स्तर पर प्रतिबिंबन, मापन और दक्षप्रयोग में यह यंत्र महत्वपूर्ण भुमिका निभा रहा है। इस यंत्र को सूक्ष्मदर्शी कहना ठीक नहीं है, क्योंकि यह यंत्र एक यांत्रिक अन्वेषिका के प्रयोग से सतह को छूकर प्रतिबिंब बनाता है। पैजोविद्युत तत्वों के प्रयोग से बहुत ही सूक्ष्म स्तर पर नियंत्रण हो पाता है। .

नई!!: अनुप्रयुक्त भौतिकी और परमाण्विक बल सूक्ष्मदर्शी यंत्र · और देखें »

प्राक्षेपिकी

प्रक्षेपिकी क्षेपण विज्ञान या प्राक्षेपिकी (Ballistics, यूनानी भाषा में βάλλειν ('ba'llein') .

नई!!: अनुप्रयुक्त भौतिकी और प्राक्षेपिकी · और देखें »

प्रकाशिकी

दर्पणो से प्रकाश के परिवर्तन प्रकाशिकी का विषय है। प्रकाश का अध्ययन भी दो खंडों में किया जाता है। पहला खंड, ज्यामितीय प्रकाशिकी, प्रकाश किरण की संकल्पना पर आधृत है। दर्पणों से प्रकाश का परार्वतन और लेंसों तथा प्रिज्मों से प्रकाश का अपवर्तन, ज्यामितीय प्रकाशिकी के विषय है। सूक्ष्मदर्शी, दूरदर्शी, फोटोग्राफी कैमरा तथा अन्य उपयोगी प्रकाशिकी यंत्रों की क्रियाविधि ज्यामितीय प्रकाशिकी के नियमों पर ही आधृत है। प्रकाशिकी का दूसरा खंड भौतिक प्रकाशिकी है। इसमें प्रकाश की मूल प्रकृति तथा प्रकाश और द्रव्य की पारस्परिक क्रिया का अध्ययन किया जाता है। प्रकाश सूक्ष्म कणों का संचार है, ऐसा मानकर न्यूटन ने ज्यामितीय प्रकाशिकी के मुख्य परिणामों की व्याख्या की। पर 19वीं शताब्दी में प्रकाश के व्यतिकरण की घटनाओं का आविष्कार हुआ। इन क्रियाओं की व्याख्या कणिका सिद्धांत से संभव नहीं है, अत: बाध्य होकर यह मानना पड़ा कि प्रकाश तरंगसंचार ही है। ऊपर वर्णित मैक्सवेल के विद्युतचुंबकीय सिद्धांत ने प्रकाश के तरंग सिद्धांत को ठोस आधार दिया। भौतिक प्रकाशिकी का एक महत्वपूर्ण भाग * श्रेणी:प्राकृतिक दर्शन श्रेणी:विद्युतचुंबकीय विकिरण.

नई!!: अनुप्रयुक्त भौतिकी और प्रकाशिकी · और देखें »

प्लाज़्मा (भौतिकी)

प्लाज्मा दीप भौतिकी और रसायन शास्त्र में, प्लाज्मा आंशिक रूप से आयनीकृत एक गैस है, जिसमें इलेक्ट्रॉनों का एक निश्चित अनुपात किसी परमाणु या अणु के साथ बंधे होने के बजाय स्वतंत्र होता है। प्लाज्मा में धनावेश और ऋणावेश की स्वतंत्र रूप से गमन करने की क्षमता प्लाज्मा को विद्युत चालक बनाती है जिसके परिणामस्वरूप यह दृढ़ता से विद्युत चुम्बकीय क्षेत्रों से प्रतिक्रिया कर पाता है। प्लाज्मा के गुण ठोस, द्रव या गैस के गुणों से काफी विपरीत हैं और इसलिए इसे पदार्थ की एक भिन्न अवस्था माना जाता है। प्लाज्मा आमतौर पर, एक तटस्थ-गैस के बादलों का रूप ले लेता है, जैसे सितारों में। गैस की तरह प्लाज्मा का कोई निश्चित आकार या निश्चित आयतन नहीं होता जब तक इसे किसी पात्र में बंद न कर दिया जाए लेकिन गैस के विपरीत किसी चुंबकीय क्षेत्र के प्रभाव में यह एक फिलामेंट, पुंज या दोहरी परत जैसी संरचनाओं का निर्माण करता है। प्लाज़्मा ग्लोब एक सजावटी वस्तु होती है, जिसमें एक कांच के गोले में कई गैसों के मिश्रण में इलेक्ट्रोड द्वारा गोले तक कई रंगों की किरणें चलती दिखाई देती हैं। प्लाज्मा की पहचान सबसे पहले एक क्रूक्स नली में १८७९ मे सर विलियम क्रूक्स द्वारा की गई थी उन्होंने इसे “चमकते पदार्थ” का नाम दिया था। क्रूक्स नली की प्रकृति "कैथोड रे" की पहचान इसके बाद ब्रिटिश भौतिक विज्ञानी सर जे जे थॉमसन द्वारा १८९७ में द्वारा की गयी। १९२८ में इरविंग लैंगम्युइर ने इसे प्लाज्मा नाम दिया, शायद इसने उन्हें रक्त प्लाविका (प्लाज्मा) की याद दिलाई थी। .

नई!!: अनुप्रयुक्त भौतिकी और प्लाज़्मा (भौतिकी) · और देखें »

भौतिक शास्त्र

भौतिकी के अन्तर्गत बहुत से प्राकृतिक विज्ञान आते हैं भौतिक शास्त्र अथवा भौतिकी, प्रकृति विज्ञान की एक विशाल शाखा है। भौतिकी को परिभाषित करना कठिन है। कुछ विद्वानों के मतानुसार यह ऊर्जा विषयक विज्ञान है और इसमें ऊर्जा के रूपांतरण तथा उसके द्रव्य संबन्धों की विवेचना की जाती है। इसके द्वारा प्राकृत जगत और उसकी आन्तरिक क्रियाओं का अध्ययन किया जाता है। स्थान, काल, गति, द्रव्य, विद्युत, प्रकाश, ऊष्मा तथा ध्वनि इत्यादि अनेक विषय इसकी परिधि में आते हैं। यह विज्ञान का एक प्रमुख विभाग है। इसके सिद्धांत समूचे विज्ञान में मान्य हैं और विज्ञान के प्रत्येक अंग में लागू होते हैं। इसका क्षेत्र विस्तृत है और इसकी सीमा निर्धारित करना अति दुष्कर है। सभी वैज्ञानिक विषय अल्पाधिक मात्रा में इसके अंतर्गत आ जाते हैं। विज्ञान की अन्य शाखायें या तो सीधे ही भौतिक पर आधारित हैं, अथवा इनके तथ्यों को इसके मूल सिद्धांतों से संबद्ध करने का प्रयत्न किया जाता है। भौतिकी का महत्व इसलिये भी अधिक है कि अभियांत्रिकी तथा शिल्पविज्ञान की जन्मदात्री होने के नाते यह इस युग के अखिल सामाजिक एवं आर्थिक विकास की मूल प्रेरक है। बहुत पहले इसको दर्शन शास्त्र का अंग मानकर नैचुरल फिलॉसोफी या प्राकृतिक दर्शनशास्त्र कहते थे, किंतु १८७० ईस्वी के लगभग इसको वर्तमान नाम भौतिकी या फिजिक्स द्वारा संबोधित करने लगे। धीरे-धीरे यह विज्ञान उन्नति करता गया और इस समय तो इसके विकास की तीव्र गति देखकर, अग्रगण्य भौतिक विज्ञानियों को भी आश्चर्य हो रहा है। धीरे-धीरे इससे अनेक महत्वपूर्ण शाखाओं की उत्पत्ति हुई, जैसे रासायनिक भौतिकी, तारा भौतिकी, जीवभौतिकी, भूभौतिकी, नाभिकीय भौतिकी, आकाशीय भौतिकी इत्यादि। भौतिकी का मुख्य सिद्धांत "उर्जा संरक्षण का नियम" है। इसके अनुसार किसी भी द्रव्यसमुदाय की ऊर्जा की मात्रा स्थिर होती है। समुदाय की आंतरिक क्रियाओं द्वारा इस मात्रा को घटाना या बढ़ाना संभव नहीं। ऊर्जा के अनेक रूप होते हैं और उसका रूपांतरण हो सकता है, किंतु उसकी मात्रा में किसी प्रकार परिवर्तन करना संभव नहीं हो सकता। आइंस्टाइन के सापेक्षिकता सिद्धांत के अनुसार द्रव्यमान भी उर्जा में बदला जा सकता है। इस प्रकार ऊर्जा संरक्षण और द्रव्यमान संरक्षण दोनों सिद्धांतों का समन्वय हो जाता है और इस सिद्धांत के द्वारा भौतिकी और रसायन एक दूसरे से संबद्ध हो जाते हैं। .

नई!!: अनुप्रयुक्त भौतिकी और भौतिक शास्त्र · और देखें »

भूभौतिकी

भूभौतिकी (Geophysics) पृथ्वी की भौतिकी है। इसके अंतर्गत पृथ्वी संबंधी सारी समस्याओं की छानबीन होती है। साथ ही यह एक प्रयुक्त विज्ञान भी है, क्योंकि इसमें भूमि समस्याओं और प्राकृतिक रूपों में उपलब्ध पदार्थों के व्यवहार की व्याख्या मूल विज्ञानों की सहायता से की जाती है। इसका विकास भौतिकी और भौमिकी से हुआ है। भूविज्ञानियों की आवश्यकता के फलस्वरूप नए साधनों के रूप में इसका जन्म हुआ। विज्ञान की शाखाओं या उपविभागों के रूप में भौतिकी, रसायन, भूविज्ञान और जीवविज्ञान को मान्यता मिले एक अरसा बीत चुका है। ज्यों-ज्यों विज्ञान का विकास हुआ, उसकी शाखाओं के मध्यवर्ती क्षेत्र उत्पन्न होते गए, जिनमें से एक भूभौतिकी है। उपर्युक्त विज्ञानों को चतुष्फलकी के शीर्ष पर निरूपित करें तो चतुष्फलक की भुजाएँ (कोर) नए विज्ञानों को निरूपित करती हैं। भूभौतिकी का जन्म भौमिकी एवं भौतिकी से हुआ है। .

नई!!: अनुप्रयुक्त भौतिकी और भूभौतिकी · और देखें »

लेसर किरण

कुहरे में लेज़र किरण एक कार के शीशे से परावर्तित होती हुई। लेजर (विकिरण के उद्दीप्त उत्सर्जन द्वारा प्रकाश प्रवर्धन) (अंग्रेज़ी:लाइट एंप्लीफिकेशन बाई स्टीमुलेटेड एमिशन ऑफ रेडिएशन) का संक्षिप्त नाम है। प्रत्यक्ष वर्णक्रम की विद्युतचुम्बकीय तरंग, यानि प्रकाश उत्तेजित उत्सर्जन की प्रक्रिया द्वारा संवर्धित कर एक सीधी रेखा की किरण में बदल कर उत्सर्जित करने का तरीक होता है। इस प्रका निकली प्रकाश किरण को भी लेज़र किरण ही कहा जाता है। ये किरण प्रायः आकाशीय रूप से कोहैरेन्ट (सरल रैखिक व एक स्रोतीय), संकरी अविचलित होती है, जिसे किसी लेन्स द्वारा परिवर्तित भी किया जा सकता है। ये किरणें संकरी वेवलेन्थ, विद्युतचुम्बकीय वर्णक्रम की एकवर्णीय प्रकाश किरणें होती है। हालांखि बहुवर्णीय प्रकाशधारिणी लेज़र किरणें या बहु वेवलेन्थ लेज़र भी निर्मित की जाती हैं। एक पदार्थ (सामान्यत: एक गैस और क्रिस्टल) को ऊर्जा, जैसे प्रकाश या विद्युत से टकराने के बाद वह अणु को विद्युतचुम्बकीय विकिरण (एक्सरे, पराबैंगनी किरणें) उत्सर्जित करने के लिए उत्तेजित करता है जिसको बाद में संवर्धित किया जाता है और एक किरण के रूप में इसे छोड़ा जाता है। लेजर एक ऐसी तकनीक के रूप में विकसित हुई है जिसके सहारे आज आधुनिक जगत के अनेक कार्य सिद्ध होते हैं। लेज़र का आविष्कार लगभग ५० वर्ष पहले हुआ था। आधुनिक जगत में लेजर का प्रयोग हर जगह मिलता है – वैज्ञानिक प्रयोगशालाओं, सुपरमार्केट और शॉपिंग मॉल्स से लेकर अस्पतालों तक में भी। मनोरंजन के संसार में डीवीडी के प्रकार्य में लेज़र ही सहायक होता है, सुरक्षा और सैन्य क्षेत्र में वायुयानों को गाइड करने में, तोप और बंदूकों को लक्ष्य लॉक करने में, आयुर्विज्ञान के क्षेत्र में दंत चिकित्सा और लेज़र से आंख के व अन्य शारीरिक ऑपरेशन, कार्यालयों के कार्य में लेज़र प्रिंटर द्वारा डाक्यूमेंट प्रिंटिंग, संचा क्षेत्र में ऑप्टिकल फाइबर केबलों तक में लेज़र ही चलती है। पिछले ५० वषों में लेजर ने अपनी उपयोगिता को व्यापक तौर पर सिद्ध कर दिखाया है। लेजर किरण का आविष्कार थिओडोर मैमेन द्वारा हुआ मात्र एक संयोग ही था। थिओडोर मैमेन के कैमरे के लैंस की कुण्डली के ऊपर माणिक्य (रूबी) का एक टुकड़ा संयोग से रखने पर एक लाल रंग की प्रकाश किरण निकली। थिओडोर ने ह्यूज़स शोध प्रयोगशाला में इस पर गहन अध्ययन किया। उन्होंने वहां देखा कि किसी बल्ब के फ्लैश से माणिक्य के पतले से बेलन को आवेशित करना संभव है और फिर इससे ऊर्जा उत्पन्न की जा सकती है। इससे शुद्ध लाल रंग का प्रकाश उत्सर्जित होता है जिसकी तरंगें एक समान रूप और अंतराल से प्रवाहित होती हैं और एक सीधी रेखा में चलती हैं। चूंकि ये किरणें अत्यंत शक्तिशाली थीं और परीक्षण के दौरान सर्वप्रथम एक रेजर के ब्लेड में भी छेद बना सकती थी, इसलिए तत्कालीन भौतिकशास्त्रियों ने इसकी शक्ति को जिलेट में मापना शुरू किया। .

नई!!: अनुप्रयुक्त भौतिकी और लेसर किरण · और देखें »

जैवभौतिकी

जैवभौतिकी (Biophysics) एक अन्तरविषयी विज्ञान है जो जीववैज्ञानिक तन्त्रों के अध्ययन के लिये भौतिकी की विधियों का सहारा लेता है। श्रेणी:भौतिकी श्रेणी:चिकित्साविज्ञान *.

नई!!: अनुप्रयुक्त भौतिकी और जैवभौतिकी · और देखें »

विज्ञान

संक्षेप में, प्रकृति के क्रमबद्ध ज्ञान को विज्ञान (Science) कहते हैं। विज्ञान वह व्यवस्थित ज्ञान या विद्या है जो विचार, अवलोकन, अध्ययन और प्रयोग से मिलती है, जो किसी अध्ययन के विषय की प्रकृति या सिद्धान्तों को जानने के लिये किये जाते हैं। विज्ञान शब्द का प्रयोग ज्ञान की ऐसी शाखा के लिये भी करते हैं, जो तथ्य, सिद्धान्त और तरीकों को प्रयोग और परिकल्पना से स्थापित और व्यवस्थित करती है। इस प्रकार कह सकते हैं कि किसी भी विषय के क्रमबद्ध ज्ञान को विज्ञान कह सकते है। ऐसा कहा जाता है कि विज्ञान के 'ज्ञान-भण्डार' के बजाय वैज्ञानिक विधि विज्ञान की असली कसौटी है। .

नई!!: अनुप्रयुक्त भौतिकी और विज्ञान · और देखें »

व्यावहारिक गणित

वाहन को शहर में एक स्थान से दूसरे स्थान पर कम से कम समय में ले जाने के लिए गणित का उपयोग करना पड़ सकता है। इसके लिए सांयोगिक इष्टतमीकरण (combinatorial optimization) तथा पूर्णांक प्रोग्रामन (integer programming) का उपयोग करना पड़ सकता है। व्यावहारिक गणित (अनुप्रयुक्त गणित या प्रायोगिक गणित), गणित की वह शाखा है जो ज्ञान की अन्य विधाओं की समस्याओं को गणित के जुगाड़ों (तकनीकों) के प्रयोग से हल करने से सम्बन्ध रखती है। ऐतिहास दृष्टि से देखें तो भौतिक विज्ञानों (physical sciences) की आवश्यकताओं ने गणित की विभिन्न शाखाओं के विकास में महती भूमिका निभायी। उदाहरण के लिये तरल यांत्रिकी में गणित का उपयोग करने से एक हल्का एवं कम ऊर्जा से की खपत करने वाला वायुयान की डिजाइन की जा सकती है। बहुत पुरातन काल से ही विषयों में गणित सर्वाधिक उपयोगी रहा है। यूनानी लोग गणित को न केवल संख्याओं और दिक् (स्पेस) का बल्कि खगोलविज्ञान और संगीत का भी अध्ययन मानते थे। गणितसारसंग्रह के 'संज्ञाधिकार' में मंगलाचरण के पश्चात महान प्राचीन भारतीय गणितज्ञ महावीराचार्य ने बड़े ही मार्मिक ढंग से गणित की प्रशंशा की है और गणित के अनेकानेक उपयोगों को गिनाया है- आज के 4000 वर्ष पहले बेबीलोन तथा मिस्र सभ्यताएँ गणित का इस्तेमाल पंचांग (कैलेंडर) बनाने के लिए किया करती थीं जिससे उन्हें पूर्व जानकारी रहती थी कि कब फसल की बुआई की जानी चाहिए या कब नील नदी में बाढ़ आएगी। अंकगणित का प्रयोग व्यापार में रुपयों-पैसों और वस्तुओं के विनिमय या हिसाब-किताब रखने के लिए किया जाता था। ज्यामिति का इस्तेमाल खेतों के चारों तरफ की सीमाओं के निर्धारण तथा पिरामिड जैसे स्मारकों के निर्माण में होता था। अपने दैनिक जीवन में रोजाना ही हम गणित का इस्तेमाल करते हैं-उस वक्त जब समय जानने के लिए हम घड़ी देखते हैं, अपने खरीदे गए सामान या खरीदारी के बाद बचने वाली रेजगारी का हिसाब जोड़ते हैं या फिर फुटबाल टेनिस या क्रिकेट खेलते समय बनने वाले स्कोर का लेखा-जोखा रखते हैं। व्यवसाय और उद्योगों से जुड़ी लेखा संबंधी संक्रियाएं गणित पर ही आधारित हैं। बीमा (इंश्योरेंस) संबंधी गणनाएं तो अधिकांशतया ब्याज की चक्रवृद्धि दर पर ही निर्भर है। जलयान या विमान का चालक मार्ग के दिशा-निर्धारण के लिए ज्यामिति का प्रयोग करता है। सर्वेक्षण का तो अधिकांश कार्य ही त्रिकोणमिति पर आधारित होता है। यहां तक कि किसी चित्रकार के आरेखण कार्य में भी गणित मददगार होता है, जैसे कि संदर्भ (पर्सपेक्टिव) में जिसमें कि चित्रकार को त्रिविमीय दुनिया में जिस तरह से इंसान और वस्तुएं असल में दिखाई पड़ते हैं, उन्हीं का तदनुरूप चित्रण वह समतल धरातल पर करता है। संगीत में स्वरग्राम तथा संनादी (हार्मोनी) और प्रतिबिंदु (काउंटरपाइंट) के सिद्धांत गणित पर ही आश्रित होते हैं। गणित का विज्ञान में इतना महत्व है तथा विज्ञान की इतनी शाखाओं में इसकी उपयोगिता है कि गणितज्ञ एरिक टेम्पल बेल ने इसे ‘विज्ञान की साम्राज्ञी और सेविका’ की संज्ञा दी है। किसी भौतिकविज्ञानी के लिए अनुमापन तथा गणित का विभिन्न तरीकों का बड़ा महत्व होता है। रसायनविज्ञानी किसी वस्तु की अम्लीयता को सूचित करने वाले पी एच (pH) मान के आकलन के लिए लघुगणक का इस्तेमाल करते हैं। कोणों और क्षेत्रफलों के अनुमापन द्वारा ही खगोलविज्ञानी सूर्य, तारों, चंद्र और ग्रहों आदि की गति की गणना करते हैं। प्राणीविज्ञान में कुछ जीव-जन्तुओं के वृद्धि-पैटर्नों के विश्लेषण के लिए विमीय विश्लेषण की मदद ली जाती है। जैसे-जैसे खगोलीय तथा काल मापन संबंधी गणनाओं की प्रामाणिकता में वृद्धि होती गई, वैसे-वैसे नौसंचालन भी आसान होता गया तथा क्रिस्टोफर कोलम्बस और उसके परवर्ती काल से मानव सुदूरगामी नए प्रदेशों की खोज में घर से निकल पड़ा। साथ ही, आगे के मार्ग का नक्शा भी वह बनाता गया। गणित का उपयोग बेहतर किस्म के समुद्री जहाज, रेल के इंजन, मोटर कारों से लेकर हवाई जहाजों के निर्माण तक में हुआ है। राडार प्रणालियों की अभिकल्पना तथा चांद और ग्रहों आदि तक अन्तरिक्ष यान भेजने में भी गणित से काम लिया गया है। .

नई!!: अनुप्रयुक्त भौतिकी और व्यावहारिक गणित · और देखें »

अतिचालकता

सामान्य चालकों तथा अतिचालकों में ताप के साथ प्रतिरोधकता का परिवर्तन जब किसी मैटेरियल को 0°k तक ठंडा किया जाता है तो उसका प्रतिरोध पूर्णतः शून्य प्रतिरोधकता प्रदर्शित करते हैं। उनके इस गुण को अतिचालकता (superconductivity) कहते हैं। शून्य प्रतिरोधकता के अलावा अतिचालकता की दशा में पदार्थ के भीतर चुम्बकीय क्षेत्र भी शून्य हो जाता है जिसे मेसनर प्रभाव (Meissner effect) के नाम से जाना जाता है। सुविदित है कि धात्विक चालकों की प्रतिरोधकता उनका ताप घटाने पर घटती जाती है। किन्तु सामान्य चालकों जैसे ताँबा और चाँदी आदि में, अशुद्धियों और दूसरे अपूर्णताओं (defects) के कारण एक सीमा के बाद प्रतिरोधकता में कमी नहीं होती। यहाँ तक कि ताँबा (कॉपर) परम शून्य ताप पर भी अशून्य प्रतिरोधकता प्रदर्शित करता है। इसके विपरीत, अतिचालक पदार्थ का ताप क्रान्तिक ताप से नीचे ले जाने पर, इसकी प्रतिरोधकता तेजी से शून्य हो जाती है। अतिचालक तार से बने हुए किसी बंद परिपथ की विद्युत धारा किसी विद्युत स्रोत के बिना सदा के लिए स्थिर रह सकती है। अतिचालकता एक प्रमात्रा-यांत्रिक दृग्विषय (quantum mechanical phenomenon.) है। अतिचालक पदार्थ चुंबकीय परिलक्षण का भी प्रभाव प्रदर्शित करते हैं। इन सबका ताप-वैद्युत-बल शून्य होता है और टामसन-गुणांक बराबर होता है। संक्रमण ताप पर इनकी विशिष्ट उष्मा में भी अकस्मात् परिवर्तन हो जाता है। यह विशेष उल्लेखनीय है कि जिन परमाणुओं में बाह्य इलेक्ट्रॉनों की संख्या 5 अथवा 7 है उनमें संक्रमण ताप उच्चतम होता है और अतिचालकता का गुण भी उत्कृष्ट होता है। .

नई!!: अनुप्रयुक्त भौतिकी और अतिचालकता · और देखें »

अनुरूप एलेक्ट्रॉनिकी

अनुरूप एलेक्ट्रॉनिकी (Analogue electronics / analog electronics) के अन्तर्गत वे एलेक्ट्रानिक प्रणालियाँ आतिं हैं जिनमें पाये जाने वाले संकेत क्रमश: या सतत बदलते हैं (न कि बहुत तेजी से, एकाएक)। इसके विपरीत आंकिक एलेक्ट्रॉनिकी में पाये जाने वाले संकेत केवल द्विस्तरीय होते हैं - शून्य या एक। एलेक्ट्रानिकी के आरम्भिक दिनों में अधिकांश प्रणालियाँ (जैसे रेडियो, टेलीफोन, आदि) अनुरूप एलेक्ट्रानिक प्रणालियाँ थीं किन्तु अब अधिकांश प्रणालियाँ या तो डिजिटल हो चुकीं हैं या शीघ्र होने वाली हैं। .

नई!!: अनुप्रयुक्त भौतिकी और अनुरूप एलेक्ट्रॉनिकी · और देखें »

अभियान्त्रिकी

लोहे का 'कड़ा' (O-ring): कनाडा के इंजिनियरों का परिचय व गौरव-चिह्न सन् 1904 में निर्मित एक इंजन की डिजाइन १२ जून १९९८ को अंतरिक्ष स्टेशन '''मीर''' अभियान्त्रिकी (Engineering) वह विज्ञान तथा व्यवसाय है जो मानव की विविध जरूरतों की पूर्ति करने में आने वाली समस्याओं का व्यावहारिक समाधान प्रस्तुत करता है। इसके लिये वह गणितीय, भौतिक व प्राकृतिक विज्ञानों के ज्ञानराशि का उपयोग करती है। इंजीनियरी भौतिक वस्तुओं और सेवाओं का उत्पादन करती है; औद्योगिक प्रक्रमों का विकास एवं नियंत्रण करती है। इसके लिये वह तकनीकी मानकों का प्रयोग करते हुए विधियाँ, डिजाइन और विनिर्देश (specifications) प्रदान करती है। .

नई!!: अनुप्रयुक्त भौतिकी और अभियान्त्रिकी · और देखें »

अभिकलनात्मक भौतिकी

कम्प्यूटेशनल भौतिकी है संख्यात्मक अध्ययन के कार्यान्वयन और एल्गोरिदम करने में समस्याओं का समाधान भौतिकी जिसके लिए एक मात्रात्मक सिद्धांत पहले से ही मौजूद है। It is often regarded as a subdiscipline of theoretical physics but some consider it an intermediate branch between theoretical and experimental physics.

नई!!: अनुप्रयुक्त भौतिकी और अभिकलनात्मक भौतिकी · और देखें »

अर्धचालक भौतिकी और यंत्र

कोई विवरण नहीं।

नई!!: अनुप्रयुक्त भौतिकी और अर्धचालक भौतिकी और यंत्र · और देखें »

अविनाशी परीक्षण

विज्ञान और उद्योगजगत में बिना नष्ट किये ही किसी पदार्थ, अवयव या प्रणाली के के गुणधर्म जानने के लिये जो विधियाँ अपनायी जाती हैं, उन्हें अविनाशी परीक्षण (Nondestructive testing) कहते हैं। इसका महत्व इस लिये है कि यह समय और पैसा दोनों बचाती है क्योंकि जिस चीज का परीक्षण किया जा रहा है उसे कोई नुकसान नहीं पहुँचता। कुछ प्रमुख अविनाशी परीक्षण विधियाँ ये हैं- अल्ट्रासोनिक, चुम्बकीय-कण, द्रव वेधन (लिक्विड पेनिट्रेशन), रेडियोग्राफिक, रिमोट विजुअल इन्सपेक्शन, भंवर-धारा परीक्षण, तथा लो कोहेरेन्स इन्टरफेरोमेट्री आदि। श्रेणी:परीक्षण विधि.

नई!!: अनुप्रयुक्त भौतिकी और अविनाशी परीक्षण · और देखें »

अंकीय इलेक्ट्रॉनिकी

अंकीय इलेक्ट्रॉनिकी या डिजिटल इलेक्ट्रॉनिक्स इलेक्ट्रॉनिक्स की एक शाखा है जिसमें विद्युत संकेत अंकीय होते हैं। अंकीय संकेत बहुत तरह के हो सकते हैं किन्तु बाइनरी डिजिटल संकेत सबसे अधिक उपयोग में आते हैं। शून्य/एक, ऑन/ऑफ, हाँ/नहीं, लो/हाई आदि बाइनरी संकेतों के कुछ उदाहरण हैं। जबसे एकीकृत परिपथों (इन्टीग्रेटेड सर्किट) का प्रादुर्भाव हुआ है और एक छोटी सी चिप में लाखों करोंड़ों इलेक्ट्रॉनिक युक्तियाँ भरी जाने लगीं हैं तब से डिजिटल इलेक्ट्रॉनिक बहुत महत्वपूर्ण हो गयी है। आधुनिक व्यक्तिगत कम्प्यूटर (पीसी) तथा सेल-फोन, डिजिटल कैमरा आदि डिजिटल इलेक्ट्रॉनिकी की देन हैं। लकडी की तख्ती पर हाथ से बुनी हुई एक द्विआधारी घड़ी एक औद्योगिक अंकीय नियंत्रक इनटेल 80486DX2 माइक्रोप्रोसेसर अंकीय इलेक्ट्रॉनिकी, या सूक्ष्माड़विक आंकिक पद्धति ऐसी प्रणाली है जो विद्युत संकेतों को, रेखीय स्तर के एक निरंतर पट्टियों के बजाए एक अलग अलग पट्टियों की श्रृंखला के रूप में दर्शाती है। इस पट्टी के सभी स्तर संकेतों की एक ही अवस्था को दर्शाते हैं। संकेतो की इस पृथकता की वजह से निर्माण सहनशीलता के काऱण रेखीय संकेतो के स्तर में आये अपेक्षाकृत छोटे बदलाव अलग आवरण नहीं छोड़ते है। जिसके परिणाम स्वरुप संकेतो की अवस्था को महसूस करने वाला परिपथ इन्हे नजरअंदाज कर देता है। ज्यादातर मामलों में संकेतो की अवस्था की संख्या दो होती है और इन दो अवस्थाओं को दो वोल्टेज स्तरों द्वारा दर्शाया जाता है: प्रयोग में आपूर्ति वोल्टेज के आधार पर एक व दूसरा (आमतौर पर "जमीनी" या शून्य वोल्ट के रूप में कहा जाता है)| 1 उच्च स्तर पर होता है व 0 निम्न स्तर पर। अक्सर ये दोनों स्तर "लो" और "हाई" के रूप में प्रतिनिधित्व करते हैं। आंकिक तकनीक का मूल लाभ इस तथ्य पर आधारित है कि संकेतो की एक सतत श्रृंखला को पुनरुत्पादित करने के बजाए, इलेक्ट्रॉनिक उपकरण को संकेतो की ० या १ जैसे किसी ज्ञात अवस्था में भेजना ज्यादा आसान होता है। डिजिटल इलेक्ट्रॉनिक्स आम तौर पर लॉजिक गेट्स के वृहद संयोजन व बूलियन तर्क प्रकार्य के सरल इलेक्ट्रोनिक्स से बनाया जाता है। .

नई!!: अनुप्रयुक्त भौतिकी और अंकीय इलेक्ट्रॉनिकी · और देखें »

यहां पुनर्निर्देश करता है:

व्यावहारिक भौतिकी

निवर्तमानआने वाली
अरे! अब हम फेसबुक पर हैं! »