लोगो
यूनियनपीडिया
संचार
Google Play पर पाएं
नई! अपने एंड्रॉयड डिवाइस पर डाउनलोड यूनियनपीडिया!
मुक्त
ब्राउज़र की तुलना में तेजी से पहुँच!
 

ध्वनि

सूची ध्वनि

ड्रम की झिल्ली में कंपन पैदा होता होता जो जो हवा के सम्पर्क में आकर ध्वनि तरंगें पैदा करती है मानव एवं अन्य जन्तु ध्वनि को कैसे सुनते हैं? -- ('''नीला''': ध्वनि तरंग, '''लाल''': कान का पर्दा, '''पीला''': कान की वह मेकेनिज्म जो ध्वनि को संकेतों में बदल देती है। '''हरा''': श्रवण तंत्रिकाएँ, '''नीललोहित''' (पर्पल): ध्वनि संकेत का आवृति स्पेक्ट्रम, '''नारंगी''': तंत्रिका में गया संकेत) ध्वनि (Sound) एक प्रकार का कम्पन या विक्षोभ है जो किसी ठोस, द्रव या गैस से होकर संचारित होती है। किन्तु मुख्य रूप से उन कम्पनों को ही ध्वनि कहते हैं जो मानव के कान (Ear) से सुनायी पडती हैं। .

28 संबंधों: ऊर्जा, ठोस, डॉप्लर प्रभाव, द्रव, ध्वनिकी, निर्वात, पराश्रव्य, परावर्तन, प्रतिध्वनि, प्रकाश, माइक्रोफोन, यांत्रिक तरंग, लाउडस्पीकर, श्रव्य प्रवर्धक, संगीत, स्पन्द, वाद्य यन्त्र, वायुयान, विद्युतचुंबकीय विकिरण, गैस, आवृत्ति, कम्पन, कान, अनुदैर्घ्य तरंग, अनुनाद, अनुप्रस्थ तरंग, अपश्रव्य, अपवर्तन

ऊर्जा

दीप्तिमान (प्रकाश) ऊर्जा छोड़ता हैं। भौतिकी में, ऊर्जा वस्तुओं का एक गुण है, जो अन्य वस्तुओं को स्थानांतरित किया जा सकता है या विभिन्न रूपों में रूपांतरित किया जा सकता हैं। किसी भी कार्यकर्ता के कार्य करने की क्षमता को ऊर्जा (Energy) कहते हैं। ऊँचाई से गिरते हुए जल में ऊर्जा है क्योंकि उससे एक पहिये को घुमाया जा सकता है जिससे बिजली पैदा की जा सकती है। ऊर्जा की सरल परिभाषा देना कठिन है। ऊर्जा वस्तु नहीं है। इसको हम देख नहीं सकते, यह कोई जगह नहीं घेरती, न इसकी कोई छाया ही पड़ती है। संक्षेप में, अन्य वस्तुओं की भाँति यह द्रव्य नहीं है, यद्यापि बहुधा द्रव्य से इसका घनिष्ठ संबंध रहता है। फिर भी इसका अस्तित्व उतना ही वास्तविक है जितना किसी अन्य वस्तु का और इस कारण कि किसी पिंड समुदाय में, जिसके ऊपर किसी बाहरी बल का प्रभाव नहीं रहता, इसकी मात्रा में कमी बेशी नहीं होती। .

नई!!: ध्वनि और ऊर्जा · और देखें »

ठोस

ठोस (solid) पदार्थ की एक अवस्था है, जिसकी पहचान पदार्थ की संरचनात्मक दृढ़ता और विकृति (आकार, आयतन और स्वरूप में परिवर्तन) के प्रति प्रत्यक्ष अवरोध के गुण के आधार पर की जाती है। ठोस पदार्थों में उच्च यंग मापांक और अपरूपता मापांक होते है। इसके विपरीत, ज्यादातर तरल पदार्थ निम्न अपरूपता मापांक वाले होते हैं और श्यानता का प्रदर्शन करते हैं। भौतिक विज्ञान की जिस शाखा में ठोस का अध्ययन करते हैं, उसे ठोस-अवस्था भौतिकी कहते हैं। पदार्थ विज्ञान में ठोस पदार्थों के भौतिक और रासायनिक गुणों और उनके अनुप्रयोग का अध्ययन करते हैं। ठोस-अवस्था रसायन में पदार्थों के संश्लेषण, उनकी पहचान और रासायनिक संघटन का अध्ययन किया जाता है। .

नई!!: ध्वनि और ठोस · और देखें »

डॉप्लर प्रभाव

जब किसी ध्वनि स्रोत और श्रोता के बीच आपेक्षिक गति होती है तो श्रोता को जो ध्वनि सुनाई पड़ती है उसकी आवृत्ति मूल आवृति से कम या अधिक होती है। इसी को डॉप्लर प्रभाव (Doppler effect) कहते हैं। श्रेणी:भौतिकी श्रेणी:भौतिक शब्दावली श्रेणी:तरंग यान्त्रिकी.

नई!!: ध्वनि और डॉप्लर प्रभाव · और देखें »

द्रव

द्रव का कोई निश्चित आकार नहीं होता। द्रव जिस पात्र में रखा जाता है उसी का आकार ग्रहण कर लेता है। प्रकृति में सभी रासायनिक पदार्थ साधारणत: ठोस, द्रव और गैस तथा प्लाज्मा - इन चार अवस्थाओं में पाए जाते हैं। द्रव और गैस प्रवाहित हो सकते हैं, किंतु ठोस प्रवाहित नहीं होता। लचीले ठोस पदार्थों में आयतन अथवा आकार को विकृत करने से प्रतिबल उत्पन्न होता है। अल्प विकृतियों के लिए विकृति और प्रतिबल परस्पर समानुपाती होते हैं। इस गुण के कारण लचीले ठोस एक निश्चित मान तक के बाहरी बलों को सँभालने की क्षमता रखते हैं। प्रवाह का गुण होने के कारण द्रवों और गैसों को तरल पदार्थ (fluid) कहा जाता है। ये पदार्थ कर्तन (shear) बलों को सँभालने में अक्षम होते हैं और गुरुत्वाकर्षण के प्रभाव के कारण प्रवाहित होकर जिस बरतन में रखे रहते हैं, उसी का आकार धारण कर लेते हैं। ठोस और तरल का यांत्रिक भेद बहुत स्पष्ट नहीं है। बहुत से पदार्थ, विशेषत: उच्च कोटि के बहुलक (polymer) के यांत्रिक गुण, श्यान तरल (viscous fluid) और लचीले ठोस के गुणों के मध्यवर्ती होते हैं। प्रत्येक पदार्थ के लिए एक ऐसा क्रांतिक ताप (critical temperature) पाया जाता है, जिससे अधिक होने पर पदार्थ केवल तरल अवस्था में रह सकता है। क्रांतिक ताप पर पदार्थ की द्रव और गैस अवस्था में विशेष अंतर नहीं रह जाता। इससे नीचे के प्रत्येक ताप पर द्रव के साथ उसका कुछ वाष्प भी उपस्थित रहता है और इस वाष्प का कुछ निश्चित दबाव भी होता है। इस दबाव को वाष्प दबाव कहते हैं। प्रत्येक ताप पर वाष्प दबाव का अधिकतम मान निश्चित होता है। इस अधिकतम दबाव को संपृक्त-वाष्प-दबाव के बराबर अथवा उससे अधिक हो, तो द्रव स्थायी रहता है। यदि ऊपरी दबाव द्रव के संपृक्तवाष्प-दबाव से कम हो, तो द्रव अस्थायी होता है। संपृक्त-वाष्प-दबाव ताप के बढ़ने से बढ़ता है। जिस ताप पर द्रव का संपृक्त-वाष्प-दबाव बाहरी वातावरण के दबाव के बराबर हो जाता है, उसपर द्रव बहुत तेजी से वाष्पित होने लगता है। इस ताप को द्रव का क्वथनांक (boiling point) कहते हैं। यदि बाहरी दबाव सर्वथा स्थायी हो तो क्वथनांक से नीचे द्रव स्थायी रहता है। क्वथनांक पर पहुँचने पर यह खौलने लगता है। इस दशा में यह ताप का शोषण करके द्रव अवस्था से गैस अवस्था में परिवर्तित होने लगता है। क्वथनांक पर द्रव के इकाई द्रव्यमान को द्रव से पूर्णत: गैस में परिवर्तित करने के लिए जितने कैलोरी ऊष्मा की आवश्यकता होती है, उसे द्रव के वाष्पीभवन की गुप्त ऊष्मा कहते हैं। विभिन्न द्रव पदार्थों के लिए इसका मान भिन्न होता है। एक नियत दबाव पर ठोस और द्रव दोनों रूप साथ साथ एक निश्चित ताप पर पाए जा सकते हैं। यह ताप द्रव का हिमबिंदु या ठोस का द्रवणांक कहलाता है। द्रवणांक पर पदार्थ के इकाई द्रव्यमान को ठोस से पूर्णत: द्रव में परिवर्तित करने में जितनी ऊष्मा की आवश्यकता होती है, उसे ठोस के गलन की गुप्त ऊष्मा कहते हैं। अक्रिस्टली पदार्थों के लिए कोई नियत गलनांक नहीं पाया जाता। वे गरम करने पर धीरे धीरे मुलायम होते जाते हैं और फिर द्रव अवस्था में आ जाते हैं। काँच तथा काँच जैसे अन्य पदार्थ इसी प्रकार का व्यवहार करते हैं। एक नियत ताप और नियत दबाव पर प्रत्येक द्रव्य की तीनों अवस्थाएँ एक साथ विद्यमान रह सकती हैं। दबाव और ताप के बीच खीचें गए आरेख (diagram) में ये नियत ताप और दबाव एक बिंदु द्वारा प्रदर्शित किए जाते हैं। इस बिंदु को द्रव का त्रिक् बिंदु (triple point) कहते हैं। त्रिक् विंदु की अपेक्षा निम्न दाबों पर द्रव अस्थायी रहता है। यदि किसी ठोस को त्रिक् विंदु की अपेक्षा निम्न दबाव पर रखकर गरम किया जाए तो वह बिना द्रव बने ही वाष्प में परिवर्तित हो जाता है, अर्थात् ऊर्ध्वपातित (sublime) हो जाता है। द्रव के मुक्त तल में, जो उस द्रव के वाष्प या सामान्य वायु के संपर्क में रहता है, एक विशेष गुण पाया जाता है, जिसके कारण यह तल तनी हुई महीन झिल्ली जैसा व्यवहार करता है। इस गुण को पृष्ठ तनाव (surface tension) कहते हैं। पृष्ठ तनाव के कारण द्रव के पृष्ठ का क्षेत्रफल यथासंभव न्यूनतम होता है। किसी दिए आयतन के लिए सबसे कम क्षेत्रफल एक गोले का होता है। अत: ऐसी स्थितियों में जब कि बाहरी बल नगण्य माने जा सकते हों द्रव की बूँदे गोल होती हैं। जब कोई द्रव किसी ठोस, या अन्य किसी अमिश्रय द्रव, के संपर्क में आता है तो भी संपर्क तल पर तनाव उत्पन्न होता है। साधारणत: कोई भी पदार्थ केवल एक ही प्रकार के द्रव रूप में प्राप्त होता है, किंतु इसके कुछ अपवाद भी मिलते हैं, जैसे हीलियम गैस को द्रवित करके दो प्रकार के हीलियम द्रव प्राप्त किए जा सकते हैं। उसी प्रकार पैरा-ऐज़ॉक्सी-ऐनिसोल (Para-azoxy-anisole) प्रकाशत: विषमदैशिक (anisotropic) द्रव के रूप में, क्रिस्टलीय अवस्था में तथा सामान्य द्रव के रूप में भी प्राप्त हो सकता है। .

नई!!: ध्वनि और द्रव · और देखें »

ध्वनिकी

सिरिया में बसरा स्थित रोमकालीन नाट्यशाला: ध्वनिकी के सिद्धान्तों का प्राचीन काल से ही उपयोग होता आ रहा है। ध्वनिकी (Acoustics) भौतिकी की वह शाखा है जिसके अन्तर्गत ध्वनि तरंगो, अपश्रव्य तरंगों एवं पराश्रव्य तरंगों सहित ठोस, द्रव एवं गैसों में संचारित होने वाली सभी प्रकार की यांत्रिक तरंगों का अध्ययन किया जाता है। ध्वनि की उत्पत्ति द्रव्यपिंडों के दोलन द्वारा होती है। इस दोलन से वायु की दाब एवं घनत्व में प्रत्यावर्ती (alternating) परिर्वतन होने लगते हैं, जो अपने स्रोत से एक विशेष वेग के साथ आगे बढ़ते हैं। इनको ही ध्वनि की तरंग कहा जाता है। जब ये तरंगें कान के परदे से टकराती हैं, तब ध्वनि-संवेदन होता है। इन तरंगों की विशेषता यह है कि इनमें परावर्तन, अपवर्तन (refraction) तथा विवर्तन (diffraction) हो सकता है। प्रति सेकंड दोलन संख्या को आवृति (frequency) कहते हैं। मनुष्य का कान एक सीमित परास की आवृतियों को ही सुन सकता है, किंतु आजकल ऐसी तरंगें भी उत्पन्न की जा सकती है जिसका कान के परदे पर कोई असर नहीं होता। कान की सीमा से अधिक परास की आवृतियों की ध्वनि को पराश्रव्य तरंगें कहते हैं। बहुत से जानवर, जैसे चमगादड़, पराश्रव्य ध्वनि सुन सकते हैं। आधुनिक समय में श्रव्य तथा पराश्रव्य दोनों प्रकार की ध्वनियों की आवृतियों को एक बड़ी सीमा के भीतर उत्पन्न किया, पहचाना और मापा जा सकता है। .

नई!!: ध्वनि और ध्वनिकी · और देखें »

निर्वात

निर्वात को प्रदर्शित करने हेतु एक पम्प जब आकाश (स्पेस) के किसी आयतन में कोई पदार्थ नहीं होता तो कहा जाता है कि वह आयतन निर्वात (वैक्युम्) है। निर्वात की स्थिति में गैसीय दाब, वायुमण्डलीय दाब की तुलना में बहुत कम होता है। किन्तु स्पेस का कोई भी आयतन पूर्णतः निर्वात हो ही नहीं सकता। .

नई!!: ध्वनि और निर्वात · और देखें »

पराश्रव्य

अल्ट्रासाउन्ड द्वारा गर्भवती स्त्री के गर्भस्थ शिशु की जाँच १२ सप्ताह के गर्भस्थ शिशु का पराश्रव्य द्वारा लिया गया फोटो पराश्रव्य (ultrasound) शब्द उन ध्वनि तरंगों के लिए उपयोग में लाया जाता है जिसकी आवृत्ति इतनी अधिक होती है कि वह मनुष्य के कानों को सुनाई नहीं देती। साधारणतया मानव श्रवणशक्ति का परास २० से लेकर २०,००० कंपन प्रति सेकंड तक होता है। इसलिए २०,००० से अधिक आवृत्तिवाली ध्वनि को पराश्रव्य कहते हैं। क्योंकि मोटे तौर पर ध्वनि का वेग गैस में ३३० मीटर प्रति सें., द्रव में १,२०० मी.

नई!!: ध्वनि और पराश्रव्य · और देखें »

परावर्तन

परावर्तन निम्न में से किसी एक के लिए प्रयुक्त शब्द है: .

नई!!: ध्वनि और परावर्तन · और देखें »

प्रतिध्वनि

जब किसी स्रोत से उत्पन्न ध्वनि आगे जाकर किसी वस्तु (जैसे दीवार, पहाड़) से टकराकर पुन: स्रोत के पास वापस लौटती है तो इसे प्रतिध्वनि (echo) कहते हैं। वस्तुत: यह ध्वनि के परावर्तन का परिणाम है जो कुछ देर बात स्रोत के पास वापस पहुंच जाती है। उदाहरण के लिये कुंएँ में आवाज लगाने पर अपनी ही आवाज थोड़ी देर बाद सुनाई पड़ती है। .

नई!!: ध्वनि और प्रतिध्वनि · और देखें »

प्रकाश

सूर्य के प्रकाश से प्रकाशित एक मेघ प्रकाश एक विद्युतचुम्बकीय विकिरण है, जिसकी तरंगदैर्ध्य दृश्य सीमा के भीतर होती है। तकनीकी या वैज्ञानिक संदर्भ में किसी भी तरंगदैर्घ्य के विकिरण को प्रकाश कहते हैं। प्रकाश का मूल कण फ़ोटान होता है। प्रकाश की तीन प्रमुख विमायें निम्नवत है।.

नई!!: ध्वनि और प्रकाश · और देखें »

माइक्रोफोन

एक माइक्रोफोन (जिसे बोलचाल की भाषा में Mic या Mike कहा जाता है) एक ध्वनिक-से-वैद्युत ट्रांसड्यूसर (en:Transducer) या संवेदक होता है, जो ध्वनि को विद्युतीय संकेत में रूपांतरित करता है। 1876 में, एमिली बर्लिनर (en:Emile Berliner) ने पहले माइक्रोफोन का आविष्कार किया, जिसका प्रयोग टेलीफोन स्वर ट्रांसमीटर के रूप में किया गया। माइक्रोफोनों का प्रयोग अनेक अनुप्रयोगों, जैसे टेलीफोन, टेप रिकार्डर, कराओके प्रणालियों, श्रवण-सहायता यंत्रों, चलचित्रों के निर्माण, सजीव तथा रिकार्ड की गई श्राव्य इंजीनियरिंग, FRS रेडियो, मेगाफोन, रेडियो व टेलीविजन प्रसारण और कम्प्यूटरों में आवाज़ रिकार्ड करने, स्वर की पहचान करने, VoIP तथा कुछ गैर-ध्वनिक उद्देश्यों, जैसे अल्ट्रासॉनिक परीक्षण या दस्तक संवेदकों के रूप में किया जाता है। शॉक माउंट वाला एक न्यूमन U87 कंडेंसर माइक्रोफोन वर्तमान में प्रयोग किये जाने वाले अधिकांश माइक्रोफोन यांत्रिक कंपन से एक विद्युतीय आवेश संकेत उत्पन्न करने के लिये एक विद्युतचुंबकीय प्रवर्तन (गतिज माइक्रोफोन), धारिता परिवर्तन (दाहिनी ओर चित्रित संघनित्र माइक्रोफोन), पाइज़ोविद्युतीय निर्माण (Piezoelectric Generation) या प्रकाश अधिमिश्रण का प्रयोग करते हैं। .

नई!!: ध्वनि और माइक्रोफोन · और देखें »

यांत्रिक तरंग

यांत्रिक तरंग (मेकैनिकल वेव) वह तरंग है जो पदार्थ के कम्पन के कारण होती है। यांत्रिक तरंगों के संचरण के लिये माध्यम की आवश्यकता होती है। उदाहरण: ध्वनि, जल की तरंगें, पराश्रव्य तरंगें, तनी हुई डोरी का कम्पन आदि। श्रेणी:तरंग.

नई!!: ध्वनि और यांत्रिक तरंग · और देखें »

लाउडस्पीकर

एक सस्ता, कम विश्वस्तता 3½ इंच स्पीकर, आमतौर पर छोटे रेडियो में पाया जाता है। एक चतुर्मार्गी, उच्च विश्वस्तता लाउडस्पीकर सिस्टम. एक लाउडस्पीकर (या "स्पीकर") एक विद्युत-ध्वनिक ऊर्जा परिवर्तित्र है, जो वैद्युत संकेतों को ध्वनि में परिवर्तित करता है। स्पीकर वैद्युत संकेतों के परिवर्तनों के अनुसार चलता है तथा वायु या जल के माध्यम से ध्वनि तरंगों का संचार करवाता है। श्रवण क्षेत्रों की ध्वनिकी के बाद, लाउडस्पीकर (तथा अन्य विद्युत-ध्वनि ऊर्जा परिवर्तित्र) आधुनिक श्रव्य प्रणालियों में सर्वाधिक परिवर्तनशील तत्व हैं तथा ध्वनि प्रणालियों की तुलना करते समय प्रायः यही सर्वाधिक विरूपणों और श्रव्य असमानताओं के लिए उत्तरदायी होते हैं। .

नई!!: ध्वनि और लाउडस्पीकर · और देखें »

श्रव्य प्रवर्धक

एकीकृत परिपथ (आईसी) से बना एक श्रव्य शक्ति प्रवर्धक आईसी के रूप में एक श्रव्य-आवृत्ति प्रवर्धक (Lm3886tf) ऐसे एलेक्ट्रानिक प्रवर्धक को श्रव्य प्रवर्धक या आडियो एम्प्लिफायर (audio amplifier) कहते हैं जो कम शक्ति के श्रव्य संकेतों का प्रवर्धन कर सकें। श्रव्य-आवृत्‍ति शक्ति प्रवर्धक (audio power amplifier) वह एलेक्ट्रॉनिक प्रवर्धक है जो कम शक्ति के श्रव्य आवृत्ति वाले विद्युत संकेतों को प्रवर्धित करके उनको इतना शक्तिशाली बना दे कि वे लाउडस्पीकर को चला सकें। उन संकेतों को श्रव्य संकेत (आडियो सिगनल) कहते हैं जिनकी आवृत्ति २० हर्ट्ज से लेकर २० हजार हर्ट्ज के बीच होती है। इस सीमा के भीतर की आवृत्तियों वाले संकेत ही मानव कर्ण को सुनाई पड़ते हैं, इससे कम या अधिक के नहीं। श्रव्य प्रवर्धकों का निवेश संकेत (इनपुट सिगनल) कुछ सौ माइक्रोवाट के स्तर का होता है जबकि आउटपुट दस, सौ या हजार वाट के स्तर का हो सकता है। श्रव्य प्रवर्धक, रेडियो, टीवी, टेलीफोन, सेलफोन आदि के आवश्यक अंग है। .

नई!!: ध्वनि और श्रव्य प्रवर्धक · और देखें »

संगीत

नेपाल की नुक्कड़ संगीत-मण्डली द्वारा पारम्परिक संगीत सुव्यवस्थित ध्वनि, जो रस की सृष्टि करे, संगीत कहलाती है। गायन, वादन व नृत्य ये तीनों ही संगीत हैं। संगीत नाम इन तीनों के एक साथ व्यवहार से पड़ा है। गाना, बजाना और नाचना प्रायः इतने पुराने है जितना पुराना आदमी है। बजाने और बाजे की कला आदमी ने कुछ बाद में खोजी-सीखी हो, पर गाने और नाचने का आरंभ तो न केवल हज़ारों बल्कि लाखों वर्ष पहले उसने कर लिया होगा, इसमें संदेह नहीं। गान मानव के लिए प्राय: उतना ही स्वाभाविक है जितना भाषण। कब से मनुष्य ने गाना प्रारंभ किया, यह बतलाना उतना ही कठिन है जितना कि कब से उसने बोलना प्रारंभ किया। परंतु बहुत काल बीत जाने के बाद उसके गान ने व्यवस्थित रूप धारण किया। जब स्वर और लय व्यवस्थित रूप धारण करते हैं तब एक कला का प्रादुर्भाव होता है और इस कला को संगीत, म्यूजिक या मौसीकी कहते हैं। .

नई!!: ध्वनि और संगीत · और देखें »

स्पन्द

भौतिकी में स्पन्द अथवा स्पंद (pulse) किसी माध्यम में एक बिन्दु से दूसरे बिन्दु तक जाने वाले एकल विक्षोभ को कहते हैं। .

नई!!: ध्वनि और स्पन्द · और देखें »

वाद्य यन्त्र

एक वाद्य यंत्र का निर्माण या प्रयोग, संगीत की ध्वनि निकालने के प्रयोजन के लिए होता है। सिद्धांत रूप से, कोई भी वस्तु जो ध्वनि पैदा करती है, वाद्य यंत्र कही जा सकती है। वाद्ययंत्र का इतिहास, मानव संस्कृति की शुरुआत से प्रारंभ होता है। वाद्ययंत्र का शैक्षणिक अध्ययन, अंग्रेज़ी में ओर्गेनोलोजी कहलाता है। केवल वाद्य यंत्र के उपयोग से की गई संगीत रचना वाद्य संगीत कहलाती है। संगीत वाद्य के रूप में एक विवादित यंत्र की तिथि और उत्पत्ति 67,000 साल पुरानी मानी जाती है; कलाकृतियां जिन्हें सामान्यतः प्रारंभिक बांसुरी माना जाता है करीब 37,000 साल पुरानी हैं। हालांकि, अधिकांश इतिहासकारों का मानना है कि वाद्य यंत्र के आविष्कार का एक विशिष्ट समय निर्धारित कर पाना, परिभाषा के व्यक्तिपरक होने के कारण असंभव है। वाद्ययंत्र, दुनिया के कई आबादी वाले क्षेत्रों में स्वतंत्र रूप से विकसित हुए.

नई!!: ध्वनि और वाद्य यन्त्र · और देखें »

वायुयान

एक बोईंग ७८७ ड्रीमलाइनर विमान हवा में उड़ान भरता हुआ वायुयान ऐसे यान को कहते है जो धरती के वातावरण या किसी अन्य वातावरण में उड सकता है। किन्तु राकेट, वायुयान नहीं है क्योंकि उडने के लिये इसके चारो तरफ हवा का होना आवश्यक नहीं है। .

नई!!: ध्वनि और वायुयान · और देखें »

विद्युतचुंबकीय विकिरण

विद्युतचुंबकीय तरंगों का दृष्यात्मक निरूपण विद्युत चुंबकीय विकिरण शून्य (स्पेस) एवं अन्य माध्यमों से स्वयं-प्रसारित तरंग होती है। इसे प्रकाश भी कहा जाता है किन्तु वास्तव में प्रकाश, विद्युतचुंबकीय विकिरण का एक छोटा सा भाग है। दृष्य प्रकाश, एक्स-किरण, गामा-किरण, रेडियो तरंगे आदि सभी विद्युतचुंबकीय तरंगे हैं। .

नई!!: ध्वनि और विद्युतचुंबकीय विकिरण · और देखें »

गैस

गैसों का कण मॉडल: गैसों के कणों के बीच की औसत दूरी अपेक्षाकृत अधिक होती है। गैस (Gas) पदार्थ की तीन अवस्थाओं में से एक अवस्था का नाम है (अन्य दो अवस्थाएँ हैं - ठोस तथा द्रव)। गैस अवस्था में पदार्थ का न तो निश्चित आकार होता है न नियत आयतन। ये जिस बर्तन में रखे जाते हैं उसी का आकार और पूरा आयतन ग्रहण कर लेते हैं। जीवधारियों के लिये दो गैसे मुख्य हैं, आक्सीजन गैस जिसके द्वारा जीवधारी जीवित रहता है, दूसरी जिसे जीवधारी अपने शरीर से छोड़ते हैं, उसका नाम कार्बन डाई आक्साइड है। इनके अलावा अन्य गैसों का भी बहु-प्रयोग होता है, जैसे खाना पकाने वाली रसोई गैस। पानी दो गैसों से मिलकर बनता है, आक्सीजन और हाइड्रोजन। .

नई!!: ध्वनि और गैस · और देखें »

आवृत्ति

विभिन्न आवृतियों की तरंगें कोई आवृत घटना (बार-बार दोहराई जाने वाली घटना), इकाई समय में जितनी बार घटित होती है उसे उस घटना की आवृत्ति (frequency) कहते हैं। आवृति को किसी साइनाकार (sinusoidal) तरंग के कला (phase) परिवर्तन की दर के रूप में भी समझ सकते हैं। आवृति की इकाई हर्त्ज (साकल्स प्रति सेकण्ड) होती है। एक कम्पन पूरा करने में जितना समय लगता है उसे आवर्त काल (Time Period) कहते हैं। आवर्त काल .

नई!!: ध्वनि और आवृत्ति · और देखें »

कम्पन

ढोल के परदे का कम्पन स्पंदन संस्कृत का एक शब्द है हिन्दी में इसके शाब्दिक अर्थ हैं:-.

नई!!: ध्वनि और कम्पन · और देखें »

कान

मानव व अन्य स्तनधारी प्राणियों मे कर्ण या कान श्रवण प्रणाली का मुख्य अंग है। कशेरुकी प्राणियों मे मछली से लेकर मनुष्य तक कान जीववैज्ञानिक रूप से समान होता है सिर्फ उसकी संरचना गण और प्रजाति के अनुसार भिन्नता का प्रदर्शन करती है। कान वह अंग है जो ध्वनि का पता लगाता है, यह न केवल ध्वनि के लिए एक ग्राहक (रिसीवर) के रूप में कार्य करता है, अपितु शरीर के संतुलन और स्थिति के बोध में भी एक प्रमुख भूमिका निभाता है। "कान" शब्द को पूर्ण अंग या सिर्फ दिखाई देने वाले भाग के लिए प्रयुक्त किया जा सकता है। अधिकतर प्राणियों में, कान का जो हिस्सा दिखाई देता है वह ऊतकों से निर्मित एक प्रालंब होता है जिसे बाह्यकर्ण या कर्णपाली कहा जाता है। बाह्यकर्ण श्रवण प्रक्रिया के कई कदमो मे से सिर्फ पहले कदम पर ही प्रयुक्त होता है और शरीर को संतुलन बोध कराने में कोई भूमिका नहीं निभाता। कशेरुकी प्राणियों मे कान जोड़े मे सममितीय रूप से सिर के दोनो ओर उपस्थित होते हैं। यह व्यवस्था ध्वनि स्रोतों की स्थिति निर्धारण करने में सहायक होती है। .

नई!!: ध्वनि और कान · और देखें »

अनुदैर्घ्य तरंग

अनुदैर्घ्य तरंगे (Longitudinal waves) वे तरंगें हैं जिनमें माध्यम के कणों का विस्थापन तरंग की गति की दिशा या उसके विपरीत दिशा में ही होता है। इन्हें "l तरंगें" भी कहते हैं। यांत्रिक अनुदैर्घ्य तरंगों को संपीडन तरंगें (compressional waves) भी कहते हैं क्योंकि इन तरंगों के संचरण के कारण माध्यम के अन्दर संपीडन (compression) और विरलन (rarefaction) का निर्माण होता है। अनुप्रस्थ तरंगें (transverse wave) इससे अलग प्रकार की तरंगें हैं जिनमें कणों के कम्पन की गति, तरंग के संचरण की गति के लम्बवत होती है। श्रेणी:तरंग श्रेणी:चित्र जोड़ें.

नई!!: ध्वनि और अनुदैर्घ्य तरंग · और देखें »

अनुनाद

जैसे-जैसे आवृत्ति, अनुनाद आवृत्ति के पास पहुँचती है, आयाम बढता जाता है भौतिकी में बहुत से तंत्रों (सिस्टम्स्) की ऐसी प्रवृत्ति होती है कि वे कुछ आवृत्तियों पर बहुत अधिक आयाम के साथ दोलन करते हैं। इस स्थिति को अनुनाद (रिजोनेन्स) कहते हैं। जिस आवृत्ति पर सबसे अधिक आयाम वाले दोलन की प्रवृत्ति पायी जाती है, उस आवृत्ति को अनुनाद आवृत्ति (रेसोनेन्स फ्रिक्वेन्सी) कहते हैं। सभी प्रकार के कम्पनों या तरंगों के साथ अनुनाद की घटना जुड़ी हुई है। अर्थात यांत्रिक, ध्वनि, विद्युतचुम्बकीय अथवा क्वांटम तरंग फलनों के साथ अनुनाद हो सकती है। कोई छोटे आयाम का भी आवर्ती बल, जो अनुनाद आवृत्ति वाला या उसके लगभग बराबर आवृत्ति वाला हो, उस तंत्र में बहुत अधिक आयाम के दोलन पैदा कर सकता है। अनुनादी तंत्रों के बहुत से उपयोग हैं। इनका उपयोग किसी वांछित आवृत्ति पर कम्पन (दोलन) पैदा करने के लिया किया जा सकता है; अथवा किसी जटिल कम्पन (जिसमें बहुत सी आवृत्तियों का मिश्रण हो; जैसे रेडियो या टीवी सिगनल) में से किसी चुनी हुई आवृत्ति को छाटने (फिल्टर करने) के लिये किया जा सकता है।; अनुनाद होने के लिये तीन चींजें जरूरी हैं- १) एक वस्तु या तन्त्र - जिसकी कोई प्राकृतिक आवृत्ति हो; २) वाहक या कारक बल (ड्राइविंग फोर्स) - जिसकी आवृत्ति, तन्त्र की प्राकृतिक आवृत्ति के समान हो; ३) इस तंत्र में उर्जा नष्ट करने वाला अवयव कम से कम हो (कम डैम्पिंग हो)। (घर्षण, प्रतिरोध (रेजिस्टैन्स), श्यानता (विस्कासिटी) आदि किसी तन्त्र में उर्जा ह्रास के लिये जिम्मेदार होते हैं।) .

नई!!: ध्वनि और अनुनाद · और देखें »

अनुप्रस्थ तरंग

अनुप्रस्थ तरंग उस तरंग को कहते हैं जिसके दोलन तरंग संचरण की दिशा के लम्बवत होते हैं। उदाहरण के लिये, विद्युतचुम्बकीय तरंगें अनुप्रस्थ तरंगे होतीं हैं। .

नई!!: ध्वनि और अनुप्रस्थ तरंग · और देखें »

अपश्रव्य

अपश्रव्य से आशय उन यांत्रिक तरंगों से है जिनकी आवृत्ति २० हर्ट्स से कम होती है। सामान्य मनुष्य लगभग २० हर्ट्स से लेकर २० हजार हर्ट्स की तरंगों को सुन सकता है, जिन्हें श्रव्य तरंगें कहते हैं। .

नई!!: ध्वनि और अपश्रव्य · और देखें »

अपवर्तन

अपवर्तन के कारण छड़ी टेढ़ी दिखती है। एक माध्यम से दूसरे माध्यम में पहुँचने तरंग की गति की दिशा में परिवर्तन हो जाता है जिसे अपवर्तन कहते हैं। .

नई!!: ध्वनि और अपवर्तन · और देखें »

यहां पुनर्निर्देश करता है:

ध्वनि तरंग

निवर्तमानआने वाली
अरे! अब हम फेसबुक पर हैं! »