लोगो
यूनियनपीडिया
संचार
Google Play पर पाएं
नई! अपने एंड्रॉयड डिवाइस पर डाउनलोड यूनियनपीडिया!
मुक्त
ब्राउज़र की तुलना में तेजी से पहुँच!
 

ऊष्मा चालकता

सूची ऊष्मा चालकता

भौतिकी में, ऊष्मा चालकता (थर्मल कण्डक्टिविटी) पदार्थों का वह गुण है जो दिखाती है कि पदार्थ से होकर ऊष्मा आसानी से प्रवाहित हो सकती है या नहीं। ऊष्मा चालकता को k, λ, या κ से निरूपित करते हैं। जिन पदार्थों की ऊष्मा चालकता अधिक होती है उनसे होकर समान समय में अधिक ऊष्मा प्रवाहित होती है (यदि अन्य परिस्थितियाँ, जैसे ताप का अन्तर, पदार्थ की लम्बाई और क्षेत्रफल आदि समान हों)। जिन पदार्थों की ऊष्मा चालकता बहुत कम होती हैं उन्हें ऊष्मा का कुचालक (थर्मल इन्सुलेटर) कहा जाता है। ऊष्मा चालकता के व्युत्क्रम (रेसिप्रोकल) को उष्मा प्रतिरोधकता (thermal resistivity) कहते हैं। .

52 संबंधों: ऊष्मा, ऊष्मा धारिता, ऊष्मा रोधन, चाँदी, एल्युमिनियम, एसीटोन, ठोस, ताम्र, द्रव, दूध, धातु, नाइट्रोजन, नियोन, निकल, पारा, प्राकृतिक गैस, प्लैटिनम, पॉलीएथिलीन, पॉलीस्टरीन, पीतल, बर्फ़, भौतिक शास्त्र, मेथेनॉल, लकड़ी, लोहा, साधारण नमक, स्टेनलेस स्टील, स्थाई अवस्था, स्फटिक, सोना, सीसा, हाइड्रोजन, हिलियम, हीरा, जल, जलवाष्प, जस्ता, वायु, विद्युत चालकता, गुप्त ऊष्मा, ग्रेफाइट, गैडोलिनियम, गैस, ऑक्सीजन, आर्गन, काग़ज़, कांच, कांसा, कंक्रीट, क्रिप्टॉन, ..., क्लोरोफॉर्म, क्लोरीन सूचकांक विस्तार (2 अधिक) »

ऊष्मा

इस उपशाखा में ऊष्मा ताप और उनके प्रभाव का वर्णन किया जाता है। प्राय: सभी द्रव्यों का आयतन तापवृद्धि से बढ़ जाता है। इसी गुण का उपयोग करते हुए तापमापी बनाए जाते हैं। ऊष्मा या ऊष्मीय ऊर्जा ऊर्जा का एक रूप है जो ताप के कारण होता है। ऊर्जा के अन्य रूपों की तरह ऊष्मा का भी प्रवाह होता है। किसी पदार्थ के गर्म या ठंढे होने के कारण उसमें जो ऊर्जा होती है उसे उसकी ऊष्मीय ऊर्जा कहते हैं। अन्य ऊर्जा की तरह इसका मात्रक भी जूल (Joule) होता है पर इसे कैलोरी (Calorie) में भी व्यक्त करते हैं। .

नई!!: ऊष्मा चालकता और ऊष्मा · और देखें »

ऊष्मा धारिता

किसी पदार्थ के द्रव्यमान का ताप एक डिग्री सेल्सियस बढ़ाने के लिए आवश्यक ऊष्मा की मात्रा को उस पदार्थ की ऊष्मा धारिता (Heat capacity) कहते हैं। इस भौतिक राशि का एस आई मात्रक जूल प्रति केल्विन (J/K) है। ऊष्मा धारिता की विमा है। सूत्र के रूप में, जहाँ, C पदार्थ की ऊष्मा-धारिता है। .

नई!!: ऊष्मा चालकता और ऊष्मा धारिता · और देखें »

ऊष्मा रोधन

ठण्ड से बचने के लिये (अर्थात, ऊष्मा रोधकता को बढ़ाने के लिये) जन्तु अपने रोंओं या परों को कड़ा (सीधा) कर लेते हैं। दो वस्तुओं के बीच में ऊष्मा के प्रवाह में अवरोध को ऊष्मा अवरोधन (Thermal insulation) कहते हैं। ऊष्मा के रोधन के लिये विशेष रूप से अभिकल्पित प्रक्रमों, विशेष आकर तथा उपयुक्त पदार्थों का चुनाव बहुत जरूरी है। दो अलग-अलग ताप वाली वस्तुओं के सीधे सम्पर्क में आने पर उनके बीच ऊष्मा का अन्तरण अवश्य होगा। किन्तु इन दोनों वस्तुओं के बीच ऊष्मारोधी पदार्थ प्रविष्ट करा देने से ऊष्मा का प्रवाह पहले से कम होगा। कितना कम होगा यह इस बात पर निर्भर करता है कि ऊष्मारोधी पदार्थ की मोटाई कितनी है, उसकी ऊष्मा चालकता कितनी कम है आदि। इसी प्रकार विकिरण द्वारा ऊष्मा के प्रवाह को कम करने के लिये कुछ अन्य तरीके अपनाए जाते हैं। किसी पदार्थ की ऊष्मा चालकता जितनी कम होती है, वह उतना ही अच्छा ऊष्मारोधी होता है। ऊष्मा इंजीनियरी के क्षेत्र में ऊष्मारोधी पदार्थ के अन्य गुण हैं, घनत्व तथा विशिष्ट ऊष्मा। .

नई!!: ऊष्मा चालकता और ऊष्मा रोधन · और देखें »

चाँदी

चाँदी एक चमकीली व बहुमूल्य धातु है। इसका परमाणु क्रमांक 47 व परमाणु द्रव्यमान 107.9 है यह एक तन्य धातु है,अतः इसका उपयोग तार व आभूषण बनाने में होता है। इसका परमाण्विक इलेक्ट्रोन विन्यास-1s22s22p63s23p63d104s24p64d105s1 है। चाँदी सर्वाधिक विद्युतचालक व ऊष्माचालक धातु है। इसमे जल व कार्बन डाई ऑक्साइड व सल्फर डाई ऑक्साइड से अभिक्रिया से जंग उत्पन्न होती है, जो काले रंग की होती है। .

नई!!: ऊष्मा चालकता और चाँदी · और देखें »

एल्युमिनियम

एलुमिनियम एक रासायनिक तत्व है जो धातुरूप में पाया जाता है। यह भूपर्पटी में सबसे अधिक मात्रा में पाई जाने वाली धातु है। एलुमिनियम का एक प्रमुख अयस्क है - बॉक्साईट। यह मुख्य रूप से अलुमिनियम ऑक्साईड, आयरन आक्साईड तथा कुछ अन्य अशुद्धियों से मिलकर बना होता है। बेयर प्रक्रम द्वारा इन अशुद्धियों को दूर कर दिया जाता है जिससे सिर्फ़ अलुमिना (Al2O3) बच जाता है। एलुमिना से विद्युत अपघटन द्वारा शुद्ध एलुमिनियम प्राप्त होता है। एलुमिनियम धातु विद्युत तथा ऊष्मा का चालक तथा काफ़ी हल्की होती है। इसके कारण इसका उपयोग हवाई जहाज के पुर्जों को बनाने में किया जाता है। भारत में जम्मू कश्मीर, मुंबई, कोल्हापुर, जबलपुर, रांची, सोनभद्र, बालाघाट तथा कटनी में बॉक्साईट के विशाल भंडार पाए जाते है। उड़ीसा स्थित नाल्को (NALCO) दुनिया की सबसे सस्ती अलुमिनियम बनाने वाली कम्पनी है। .

नई!!: ऊष्मा चालकता और एल्युमिनियम · और देखें »

एसीटोन

ऐसीटोन (Acetone) एक रंगहीन, अभिलाक्षणिक गंधवाला, ज्वलनशील द्रव है जो पानी, ईथर और ऐलकोहल में मिश्रय है। यह काष्ठ के भंजक आसवन (destructive distillation) से प्राप्त पाइरोलिग्नियस अम्ल का घटक है। इसका मुख्य उपयोग विलायक के रूप में होता है। यह फिल्मों, शक्तिशाली विस्फोटकों, आसंजकों, काँच के समान एक प्लास्टिक (पर्स्पेक्स) और ओषधियों के निर्माण में काम आता है। अति शुद्ध ऐसीटोन का उपयोग इलेक्ट्रानिकी उद्योग में विभिन्न पुर्जो को सुखाने और उन्हें साफ करने के लिए होता है। एसीटोन का सिस्टेमैटिक नाम 'प्रोपेनोन' (propanone) है। इसका अणुसूत्र (CH3)2CO है। यह सबसे सरल कीटोन है। .

नई!!: ऊष्मा चालकता और एसीटोन · और देखें »

ठोस

ठोस (solid) पदार्थ की एक अवस्था है, जिसकी पहचान पदार्थ की संरचनात्मक दृढ़ता और विकृति (आकार, आयतन और स्वरूप में परिवर्तन) के प्रति प्रत्यक्ष अवरोध के गुण के आधार पर की जाती है। ठोस पदार्थों में उच्च यंग मापांक और अपरूपता मापांक होते है। इसके विपरीत, ज्यादातर तरल पदार्थ निम्न अपरूपता मापांक वाले होते हैं और श्यानता का प्रदर्शन करते हैं। भौतिक विज्ञान की जिस शाखा में ठोस का अध्ययन करते हैं, उसे ठोस-अवस्था भौतिकी कहते हैं। पदार्थ विज्ञान में ठोस पदार्थों के भौतिक और रासायनिक गुणों और उनके अनुप्रयोग का अध्ययन करते हैं। ठोस-अवस्था रसायन में पदार्थों के संश्लेषण, उनकी पहचान और रासायनिक संघटन का अध्ययन किया जाता है। .

नई!!: ऊष्मा चालकता और ठोस · और देखें »

ताम्र

तांबा (ताम्र) एक भौतिक तत्त्व है। इसका संकेत Cu (अंग्रेज़ी - Copper) है। इसकी परमाणु संख्या 29 और परमाणु भार 63.5 है। यह एक तन्य धातु है जिसका प्रयोग विद्युत के चालक के रूप में प्रधानता से किया जाता है। मानव सभ्यता के इतिहास में तांबे का एक प्रमुख स्थान है क्योंकि प्राचीन काल में मानव द्वारा सबसे पहले प्रयुक्त धातुओं और मिश्रधातुओं में तांबा और कांसे (जो कि तांबे और टिन से मिलकर बनता है) का नाम आता है। .

नई!!: ऊष्मा चालकता और ताम्र · और देखें »

द्रव

द्रव का कोई निश्चित आकार नहीं होता। द्रव जिस पात्र में रखा जाता है उसी का आकार ग्रहण कर लेता है। प्रकृति में सभी रासायनिक पदार्थ साधारणत: ठोस, द्रव और गैस तथा प्लाज्मा - इन चार अवस्थाओं में पाए जाते हैं। द्रव और गैस प्रवाहित हो सकते हैं, किंतु ठोस प्रवाहित नहीं होता। लचीले ठोस पदार्थों में आयतन अथवा आकार को विकृत करने से प्रतिबल उत्पन्न होता है। अल्प विकृतियों के लिए विकृति और प्रतिबल परस्पर समानुपाती होते हैं। इस गुण के कारण लचीले ठोस एक निश्चित मान तक के बाहरी बलों को सँभालने की क्षमता रखते हैं। प्रवाह का गुण होने के कारण द्रवों और गैसों को तरल पदार्थ (fluid) कहा जाता है। ये पदार्थ कर्तन (shear) बलों को सँभालने में अक्षम होते हैं और गुरुत्वाकर्षण के प्रभाव के कारण प्रवाहित होकर जिस बरतन में रखे रहते हैं, उसी का आकार धारण कर लेते हैं। ठोस और तरल का यांत्रिक भेद बहुत स्पष्ट नहीं है। बहुत से पदार्थ, विशेषत: उच्च कोटि के बहुलक (polymer) के यांत्रिक गुण, श्यान तरल (viscous fluid) और लचीले ठोस के गुणों के मध्यवर्ती होते हैं। प्रत्येक पदार्थ के लिए एक ऐसा क्रांतिक ताप (critical temperature) पाया जाता है, जिससे अधिक होने पर पदार्थ केवल तरल अवस्था में रह सकता है। क्रांतिक ताप पर पदार्थ की द्रव और गैस अवस्था में विशेष अंतर नहीं रह जाता। इससे नीचे के प्रत्येक ताप पर द्रव के साथ उसका कुछ वाष्प भी उपस्थित रहता है और इस वाष्प का कुछ निश्चित दबाव भी होता है। इस दबाव को वाष्प दबाव कहते हैं। प्रत्येक ताप पर वाष्प दबाव का अधिकतम मान निश्चित होता है। इस अधिकतम दबाव को संपृक्त-वाष्प-दबाव के बराबर अथवा उससे अधिक हो, तो द्रव स्थायी रहता है। यदि ऊपरी दबाव द्रव के संपृक्तवाष्प-दबाव से कम हो, तो द्रव अस्थायी होता है। संपृक्त-वाष्प-दबाव ताप के बढ़ने से बढ़ता है। जिस ताप पर द्रव का संपृक्त-वाष्प-दबाव बाहरी वातावरण के दबाव के बराबर हो जाता है, उसपर द्रव बहुत तेजी से वाष्पित होने लगता है। इस ताप को द्रव का क्वथनांक (boiling point) कहते हैं। यदि बाहरी दबाव सर्वथा स्थायी हो तो क्वथनांक से नीचे द्रव स्थायी रहता है। क्वथनांक पर पहुँचने पर यह खौलने लगता है। इस दशा में यह ताप का शोषण करके द्रव अवस्था से गैस अवस्था में परिवर्तित होने लगता है। क्वथनांक पर द्रव के इकाई द्रव्यमान को द्रव से पूर्णत: गैस में परिवर्तित करने के लिए जितने कैलोरी ऊष्मा की आवश्यकता होती है, उसे द्रव के वाष्पीभवन की गुप्त ऊष्मा कहते हैं। विभिन्न द्रव पदार्थों के लिए इसका मान भिन्न होता है। एक नियत दबाव पर ठोस और द्रव दोनों रूप साथ साथ एक निश्चित ताप पर पाए जा सकते हैं। यह ताप द्रव का हिमबिंदु या ठोस का द्रवणांक कहलाता है। द्रवणांक पर पदार्थ के इकाई द्रव्यमान को ठोस से पूर्णत: द्रव में परिवर्तित करने में जितनी ऊष्मा की आवश्यकता होती है, उसे ठोस के गलन की गुप्त ऊष्मा कहते हैं। अक्रिस्टली पदार्थों के लिए कोई नियत गलनांक नहीं पाया जाता। वे गरम करने पर धीरे धीरे मुलायम होते जाते हैं और फिर द्रव अवस्था में आ जाते हैं। काँच तथा काँच जैसे अन्य पदार्थ इसी प्रकार का व्यवहार करते हैं। एक नियत ताप और नियत दबाव पर प्रत्येक द्रव्य की तीनों अवस्थाएँ एक साथ विद्यमान रह सकती हैं। दबाव और ताप के बीच खीचें गए आरेख (diagram) में ये नियत ताप और दबाव एक बिंदु द्वारा प्रदर्शित किए जाते हैं। इस बिंदु को द्रव का त्रिक् बिंदु (triple point) कहते हैं। त्रिक् विंदु की अपेक्षा निम्न दाबों पर द्रव अस्थायी रहता है। यदि किसी ठोस को त्रिक् विंदु की अपेक्षा निम्न दबाव पर रखकर गरम किया जाए तो वह बिना द्रव बने ही वाष्प में परिवर्तित हो जाता है, अर्थात् ऊर्ध्वपातित (sublime) हो जाता है। द्रव के मुक्त तल में, जो उस द्रव के वाष्प या सामान्य वायु के संपर्क में रहता है, एक विशेष गुण पाया जाता है, जिसके कारण यह तल तनी हुई महीन झिल्ली जैसा व्यवहार करता है। इस गुण को पृष्ठ तनाव (surface tension) कहते हैं। पृष्ठ तनाव के कारण द्रव के पृष्ठ का क्षेत्रफल यथासंभव न्यूनतम होता है। किसी दिए आयतन के लिए सबसे कम क्षेत्रफल एक गोले का होता है। अत: ऐसी स्थितियों में जब कि बाहरी बल नगण्य माने जा सकते हों द्रव की बूँदे गोल होती हैं। जब कोई द्रव किसी ठोस, या अन्य किसी अमिश्रय द्रव, के संपर्क में आता है तो भी संपर्क तल पर तनाव उत्पन्न होता है। साधारणत: कोई भी पदार्थ केवल एक ही प्रकार के द्रव रूप में प्राप्त होता है, किंतु इसके कुछ अपवाद भी मिलते हैं, जैसे हीलियम गैस को द्रवित करके दो प्रकार के हीलियम द्रव प्राप्त किए जा सकते हैं। उसी प्रकार पैरा-ऐज़ॉक्सी-ऐनिसोल (Para-azoxy-anisole) प्रकाशत: विषमदैशिक (anisotropic) द्रव के रूप में, क्रिस्टलीय अवस्था में तथा सामान्य द्रव के रूप में भी प्राप्त हो सकता है। .

नई!!: ऊष्मा चालकता और द्रव · और देखें »

दूध

एक गिलास दूध दूध एक अपारदर्शी सफेद द्रव है जो मादाओं के दुग्ध ग्रन्थियों द्वारा बनाया जता है। नवजात शिशु तब तक दूध पर निर्भर रहता है जब तक वह अन्य पदार्थों का सेवन करने में अक्षम होता है। साधारणतया दूध में ८५ प्रतिशत जल होता है और शेष भाग में ठोस तत्व यानी खनिज व वसा होता है। गाय-भैंस के अलावा बाजार में विभिन्न कंपनियों का पैक्ड दूध भी उपलब्ध होता है। दूध प्रोटीन, कैल्शियम और राइबोफ्लेविन (विटामिन बी -२) युक्त होता है, इनके अलावा इसमें विटामिन ए, डी, के और ई सहित फॉस्फोरस, मैग्नीशियम, आयोडीन व कई खनिज और वसा तथा ऊर्जा भी होती है। इसके अलावा इसमें कई एंजाइम और कुछ जीवित रक्त कोशिकाएं भी हो सकती हैं।। इकॉनोमिक टाइम्स, २२ मार्च २००९ .

नई!!: ऊष्मा चालकता और दूध · और देखें »

धातु

'धातु' के अन्य अर्थों के लिए देखें - धातु (बहुविकल्पी) ---- '''धातुएँ''' - मानव सभ्यता के पूरे इतिहास में सर्वाधिक प्रयुक्त पदार्थों में धातुएँ भी हैं लुहार द्वारा धातु को गर्म करने पर रसायनशास्त्र के अनुसार धातु (metals) वे तत्व हैं जो सरलता से इलेक्ट्रान त्याग कर धनायन बनाते हैं और धातुओं के परमाणुओं के साथ धात्विक बंध बनाते हैं। इलेक्ट्रानिक मॉडल के आधार पर, धातु इलेक्ट्रानों द्वारा आच्छादित धनायनों का एक लैटिस हैं। धातुओं की पारम्परिक परिभाषा उनके बाह्य गुणों के आधार पर दी जाती है। सामान्यतः धातु चमकीले, प्रत्यास्थ, आघातवर्धनीय और सुगढ होते हैं। धातु उष्मा और विद्युत के अच्छे चालक होते हैं जबकि अधातु सामान्यतः भंगुर, चमकहीन और विद्युत तथा ऊष्मा के कुचालक होते हैं। .

नई!!: ऊष्मा चालकता और धातु · और देखें »

नाइट्रोजन

नाइट्रोजन (Nitrogen), भूयाति या नत्रजन एक रासायनिक तत्व है जिसका प्रतीक N है। इसका परमाणु क्रमांक 7 है। सामान्य ताप और दाब पर यह गैस है तथा पृथ्वी के वायुमण्डल का लगभग 78% नाइट्रोजन ही है। यह सर्वाधिक मात्रा में तत्व के रूप में उपलब्ब्ध पदार्थ भी है। यह एक रंगहीन, गंधहीन, स्वादहीन और प्रायः अक्रिय गैस है। इसकी खोज 1772 में स्कॉटलैण्ड के वैज्ञनिक डेनियल रदरफोर्ड ने की थी। आवर्त सारणी के १५ वें समूह का प्रथम तत्व है। नाइट्रोजन का रसायन अत्यंत मनोरंजक विषय है, क्योंकि समस्त जैव पदार्थों में इस तत्व का आवश्यक स्थान है। इसके दो स्थायी समस्थानिक, द्रव्यमान संख्या 14, 15 ज्ञात हैं तथा तीन अस्थायी समस्थानिक (द्रव्यमान संख्या 13, 16, 17) भी बनाए गए हैं। नाइट्रोजन तत्व की पहचान सर्वप्रथम 1772 ई. में रदरफोर्ड और शेले ने स्वतंत्र रूप से की। शेले ने उसी वर्ष यह स्थापित किया कि वायु में मुख्यत: दो गैसें उपस्थित हैं, जिसमें एक सक्रिय तथा दूसरी निष्क्रिय है। तभी प्रसिद्ध फ्रांसीसी वैज्ञानिक लाव्वाज़्ये ने नाइट्रोजन गैस को ऑक्सीजन (सक्रिय अंश) से अलग कर इसका नाम 'ऐजोट' रखा। 1790 में शाप्टाल (Chaptal) ने इसे नाइट्रोजन नाम दिया। .

नई!!: ऊष्मा चालकता और नाइट्रोजन · और देखें »

नियोन

शुद्ध नियान से भरी विसर्जन नली (डिस्चार्ज ट्यूब) निऑन (Neon) (संकेत: Ne) एक रासायनिक तत्व है। इसका परमाणु क्रमांक १० है। यह आवर्त सारणी के १८वें समूह (अक्रिय गैसें) में रखा गया है। रैमज़े और टैवर्स ने १८९८ ई. में इस गैस की खोज की थी और वायु से इसे प्राप्त किया था। .

नई!!: ऊष्मा चालकता और नियोन · और देखें »

निकल

निकल एक रासायनिक तत्व है जो रासायनिक रूप से संक्रमण धातु समूह का सदस्य है। यह एक श्वेत-चाँदी रंग की धातु है जिसमें ज़रा-सी सुनहरी आभा भी दिखती है। यह सख़्त और तन्य होता है। हालाँकि निकल के बड़े टुकड़ों पर ओक्साइड की परत बन जाती है जिस से अंदर की धातु सुरक्षित रहती है, निकल वैसे ओक्सीजन से तेज़ी से रासायनिक अभिक्रिया (रियेक्शन) कर लेता है। इस कारणवश पृथ्वी की सतह पर निकल शुद्ध रूप में नहीं मिलता और अगर मिलता है तो इसका स्रोत अंतरिक्ष से गिरे लौह उल्का होते हैं। वैज्ञानिक यह मानते हैं कि पृथ्वी का क्रोड निकल-लौह के मिश्रित धातु का बना हुआ है। .

नई!!: ऊष्मा चालकता और निकल · और देखें »

पारा

साधारण ताप पर पारा द्रव रूप में होता है। पारे का अयस्क पारा या पारद (संकेत: Hg) आवर्त सारिणी के डी-ब्लॉक का अंतिम तत्व है। इसका परमाणु क्रमांक ८० है। इसके सात स्थिर समस्थानिक ज्ञात हैं, जिनकी द्रव्यमान संख्याएँ १९६, १९८, १९९, २००, २०१, २०२ और २०४ हैं। इनके अतिरिक्त तीन अस्थिर समस्थानिक, जिनकी द्रव्यमान संख्याएँ १९५, १९७ तथा २०५ हैं, कृत्रिम साधनों से निर्मित किए गए हैं। रासायनिक जगत् में केवल यही धातु साधारण ताप और दाब पर द्रव रूप होती है। .

नई!!: ऊष्मा चालकता और पारा · और देखें »

प्राकृतिक गैस

प्राकृतिक गैस का विश्व के विभिन्न देशों में उत्पादन प्राकृतिक गैस (Natural gas) कई गैसों का मिश्रण है जिसमें मुख्यतः मिथेन होती है तथा ०-२०% तक अन्य उच्च हाइड्रोकार्बन (जैसे इथेन) गैसें होती हैं। प्राकृतिक गैस ईंधन का प्रमुख स्रोत है। यह अन्य जीवाश्म ईंधनों के साथ पायी जाती है। यह करोडों वर्ष पुर्व धरती के अन्दर जमें हुये मरे हुये जीवो के सडे गले पदार्थ से बनती है। यह गैसिय अवस्था मे पाइ जाती है। सामान्यत यह मेथेन, एथेन, प्रोपेन, ब्युटेन, पेन्टेन का मिष्रण है, जिसमे मिथेन ८० से ९० % तक पायि जाति है। इसके अतिरिक्त कुच असुध्धिया भी पायी जाती है, जैसे सल्फर, जल वास्प, आदि होते है। .

नई!!: ऊष्मा चालकता और प्राकृतिक गैस · और देखें »

प्लैटिनम

यह एक रायानिक धातु तत्व है। सबसे कठोर धातु प्लैटिनम है श्रेणी:धातु श्रेणी:रासायनिक तत्व श्रेणी:कीमती धातुएँ श्रेणी:संक्रमण धातु.

नई!!: ऊष्मा चालकता और प्लैटिनम · और देखें »

पॉलीएथिलीन

पालीइथिलीन के अणु श्रेणी:कार्बनिक यौगिक पॉलीएथिलीन या पॉलीथीन (Polyethylene या Polythene या PE; IUPAC नाम: पॉलीएथीन या पॉली (मेथीलीन)) सबसे अधिक उपयोग किया जाने वाला प्लास्टिक है। वर्तमान में इसका वार्षिक वैश्विक उत्पादन ८ करोड़ टन है। इसका मुख्य उपयोग पैकेजिंग (प्लास्टिक के थैले, प्लास्टिक फिल्में, जीओमेम्ब्रेन, बोतल और अन्य पात्र) बनाने में होता है। पॉलीथीलीन कई प्रकार के होते हैं जिनमें से अधिकांश का सूत्र (C2H4)nH2 होता है। दूसरे शब्दों में कह सकते हैं कि पॉलीथीन एक ही प्रकार के कार्बनिक यौगिकों का मिश्रण होता है जिनमें n का मान अलग-अलग होता है। पालीइथिलीन एक बहुलक है। यह इथिलीन के अणु द्वारा बनता है। यह एक बहुउपयोगी पदार्थ है। श्रेणी:प्लास्टिक.

नई!!: ऊष्मा चालकता और पॉलीएथिलीन · और देखें »

पॉलीस्टरीन

(Aldol condensation)- यह दो अणु ऐल्डिहाइड अणुओँ के मध्य या दो अणुओँ के मध्य, अल्फा-H परमाणु उपस्थित हो, तनु छार की उतस्थिति मेँ क्रिया करते हैँ। CH3-C-H.

नई!!: ऊष्मा चालकता और पॉलीस्टरीन · और देखें »

पीतल

पीतल (brass) एक प्रमुख मिश्रातु है। यह तांबा एवं जस्ता धातुओं के मिश्रण से बनाया जाता है। संस्कृत में 'पीत' का अर्थ 'पीला' होता है। यह इसके रंग (पीलापन लिए सफेद) का द्योतक है। पीतल से बना कुण्डा .

नई!!: ऊष्मा चालकता और पीतल · और देखें »

बर्फ़

बर्फ़ जल की ठोस अवस्था को कहते हैं। सामन्य दाब पर ० डिग्री सेल्सियस पर जल जमने लगता है, जल की इसी जमी हुई अवस्था को बर्फ़ कहते हैं। श्रेणी:जल *.

नई!!: ऊष्मा चालकता और बर्फ़ · और देखें »

भौतिक शास्त्र

भौतिकी के अन्तर्गत बहुत से प्राकृतिक विज्ञान आते हैं भौतिक शास्त्र अथवा भौतिकी, प्रकृति विज्ञान की एक विशाल शाखा है। भौतिकी को परिभाषित करना कठिन है। कुछ विद्वानों के मतानुसार यह ऊर्जा विषयक विज्ञान है और इसमें ऊर्जा के रूपांतरण तथा उसके द्रव्य संबन्धों की विवेचना की जाती है। इसके द्वारा प्राकृत जगत और उसकी आन्तरिक क्रियाओं का अध्ययन किया जाता है। स्थान, काल, गति, द्रव्य, विद्युत, प्रकाश, ऊष्मा तथा ध्वनि इत्यादि अनेक विषय इसकी परिधि में आते हैं। यह विज्ञान का एक प्रमुख विभाग है। इसके सिद्धांत समूचे विज्ञान में मान्य हैं और विज्ञान के प्रत्येक अंग में लागू होते हैं। इसका क्षेत्र विस्तृत है और इसकी सीमा निर्धारित करना अति दुष्कर है। सभी वैज्ञानिक विषय अल्पाधिक मात्रा में इसके अंतर्गत आ जाते हैं। विज्ञान की अन्य शाखायें या तो सीधे ही भौतिक पर आधारित हैं, अथवा इनके तथ्यों को इसके मूल सिद्धांतों से संबद्ध करने का प्रयत्न किया जाता है। भौतिकी का महत्व इसलिये भी अधिक है कि अभियांत्रिकी तथा शिल्पविज्ञान की जन्मदात्री होने के नाते यह इस युग के अखिल सामाजिक एवं आर्थिक विकास की मूल प्रेरक है। बहुत पहले इसको दर्शन शास्त्र का अंग मानकर नैचुरल फिलॉसोफी या प्राकृतिक दर्शनशास्त्र कहते थे, किंतु १८७० ईस्वी के लगभग इसको वर्तमान नाम भौतिकी या फिजिक्स द्वारा संबोधित करने लगे। धीरे-धीरे यह विज्ञान उन्नति करता गया और इस समय तो इसके विकास की तीव्र गति देखकर, अग्रगण्य भौतिक विज्ञानियों को भी आश्चर्य हो रहा है। धीरे-धीरे इससे अनेक महत्वपूर्ण शाखाओं की उत्पत्ति हुई, जैसे रासायनिक भौतिकी, तारा भौतिकी, जीवभौतिकी, भूभौतिकी, नाभिकीय भौतिकी, आकाशीय भौतिकी इत्यादि। भौतिकी का मुख्य सिद्धांत "उर्जा संरक्षण का नियम" है। इसके अनुसार किसी भी द्रव्यसमुदाय की ऊर्जा की मात्रा स्थिर होती है। समुदाय की आंतरिक क्रियाओं द्वारा इस मात्रा को घटाना या बढ़ाना संभव नहीं। ऊर्जा के अनेक रूप होते हैं और उसका रूपांतरण हो सकता है, किंतु उसकी मात्रा में किसी प्रकार परिवर्तन करना संभव नहीं हो सकता। आइंस्टाइन के सापेक्षिकता सिद्धांत के अनुसार द्रव्यमान भी उर्जा में बदला जा सकता है। इस प्रकार ऊर्जा संरक्षण और द्रव्यमान संरक्षण दोनों सिद्धांतों का समन्वय हो जाता है और इस सिद्धांत के द्वारा भौतिकी और रसायन एक दूसरे से संबद्ध हो जाते हैं। .

नई!!: ऊष्मा चालकता और भौतिक शास्त्र · और देखें »

मेथेनॉल

कोई विवरण नहीं।

नई!!: ऊष्मा चालकता और मेथेनॉल · और देखें »

लकड़ी

कई विशेषताएं दर्शाती हुई लकड़ी की सतह काष्ठ या लकड़ी एक कार्बनिक पदार्थ है, जिसका उत्पादन वृक्षों(और अन्य काष्ठजन्य पादपों) के तने में परवर्धी जाइलम के रूप में होता है। एक जीवित वृक्ष में यह पत्तियों और अन्य बढ़ते ऊतकों तक पोषक तत्वों और जल की आपूर्ति करती है, साथ ही यह वृक्ष को सहारा देता है ताकि वृक्ष खुद खड़ा रह कर यथासंभव ऊँचाई और आकार ग्रहण कर सके। लकड़ी उन सभी वानस्पतिक सामग्रियों को भी कहा जाता है, जिनके गुण काष्ठ के समान होते हैं, साथ ही इससे तैयार की जाने वाली सामग्रियाँ जैसे कि तंतु और पतले टुकड़े भी काष्ठ ही कहलाते हैं। सभ्यता के आरंभ से ही मानव लकड़ी का उपयोग कई प्रयोजनों जैसे कि ईंधन (जलावन) और निर्माण सामग्री के तौर पर कर रहा है। निर्माण सामग्री के रूप में इसका उपयोग मुख्य रूप भवन, औजार, हथियार, फर्नीचर, पैकेजिंग, कलाकृतियां और कागज आदि बनाने में किया जाता है। लकड़ी का काल निर्धारण कार्बन डेटिंग और कुछ प्रजातियों में वृक्षवलय कालक्रम के द्वारा किया जाता है। वृक्ष वलयों की चौड़ाई में साल दर साल होने वाले परिवर्तन और समस्थानिक प्रचुरता उस समय प्रचलित जलवायु का सुराग देते हैं। विभिन्न प्रकार के काष्ठ .

नई!!: ऊष्मा चालकता और लकड़ी · और देखें »

लोहा

एलेक्ट्रोलाइटिक लोहा तथा उसका एक घन सेमी का टुकड़ा लोहा या लोह (Iron) आवर्त सारणी के आठवें समूह का पहला तत्व है। धरती के गर्भ में और बाहर मिलाकर यह सर्वाधिक प्राप्य तत्व है (भार के अनुसार)। धरती के गर्भ में यह चौथा सबसे अधिक पाया जाने वाला तत्व है। इसके चार स्थायी समस्थानिक मिलते हैं, जिनकी द्रव्यमान संख्या 54, 56, 57 और 58 है। लोह के चार रेडियोऐक्टिव समस्थानिक (द्रव्यमान संख्या 52, 53, 55 और 59) भी ज्ञात हैं, जो कृत्रिम रीति से बनाए गए हैं। लोहे का लैटिन नाम:- फेरस .

नई!!: ऊष्मा चालकता और लोहा · और देखें »

साधारण नमक

नमक (Common Salt) से साधारणतया भोजन में प्रयुक्त होने वाले नमक का बोध होता है। रासायनिक दृष्टि से यह सोडियम क्लोराइड (NaCl) है जिसका क्रिस्टल पारदर्शक एवं घनाकार होता है। शुद्ध नमक रंगहीन होता है, किंतु लोहमय अपद्रव्यों के कारण इसका रंग पीला या लाल हो जाता है। समुद्र के खारापन के लिये उसमें मुख्यत: सोडियम क्लोराइड की उपस्थिति कारण होती है। भौमिकी में लवण को हैलाइट (Halite) कहते हैं। .

नई!!: ऊष्मा चालकता और साधारण नमक · और देखें »

स्टेनलेस स्टील

स्टेनलेस स्टील का प्रयोग क्षयरोधक औजार बनाने के लिए किया जाता है। बेज़ंग फ़ौलाद (स्टेनलेस स्टील) एक इस्पात है जो वायुमंडल तथा कार्बनिक और अकार्बनिक अम्लों से कलुषित (खराब) नहीं होता है। साधारण इस्पात की अपेक्षा ये अधिक ताप भी सह सकते हैं। इस्पात में ये गुण क्रोमियम मिलाने से उत्पन्न होते हैं। इसमें 15-20% क्रोमियम, 8-10% निकेल तथा साधारण स्टील होता है। क्रोमियम इस्पात के बाह्य तल को निष्क्रिय बना देता है। प्रतिरोधी शक्ति की वृद्धि के लिए इसमें निकल भी मिलाया जाता है। निकल के स्थान पर अंशत: या पूर्णत: मैंगनीज़ का भी उपयोग किया जाता है। अकलुष इस्पात के निर्माण में लोहे में कभी-कभी ताम्र, कोबाल्ट, टाइटेनियम, नियोबियम, टैंटालियम, कोलंबियम, गंधक और नाइट्रोजन भी मिलाया जाता है। इनकी सहायता से विभिन्न रासायनिक, यांत्रिक और भौतिक गुणों के अकलुष इस्पात बनाए जा सकते हैं। .

नई!!: ऊष्मा चालकता और स्टेनलेस स्टील · और देखें »

स्थाई अवस्था

जब किसी भौतिक निकाय (physical system) की विशिष्टताएँ, समय के साथ बदल न रहीं हों तो कहा जाता है कि वह निकाय स्थायी अवस्था (steady state) में है। उदाहरण के लिये लोहे की एक प्लेट को किसी भट्टी में गरम करने के बाद पानी के एक बड़े टब में डाल दिया जाय तो थोडी देर बाद इस प्लेट का तापमान पानी के तापमान पर आकर स्थिर हो जाता है। इस अवस्था को 'स्थिर अवस्था' या 'स्थिर दशा' कहेंगे। गणितीय रूप में इसे यों कह सकते हैं- जहाँ p उस तंत्र का प्रमुख चर है। उदाहरन के लिये, रासायनिक इंजीनियरी में यह चर ताप, दाब, अभिकारकों की सान्द्रता आदि हो सकता है। .

नई!!: ऊष्मा चालकता और स्थाई अवस्था · और देखें »

स्फटिक

एक शैल क्वार्ट्ज क्रिसटल स्फटिक या क्वार्ट्ज (Quartz) एक खनिज है। यह रेत एवं ग्रेनाइट का मुख्य घटक है। पृथ्वी के महाद्वीपीय भू-पर्पटी (क्रस्ट) पर क्वार्ट्ज दूसरा सर्वाधिक पाया जाने वाला खनिज है (पहला, फेल्सपार है)। यह SiO4 के सिलिकन-आक्सीजन चतुष्फलकी से बना होता है जिसमें प्रत्येक आक्सीजन दो चतुष्फलकियों में साझा होता है। इस प्रकार इसका प्रभावी अणुसूत्र SiO2 है। क्वार्टज अनेकों प्रकार के होते हैं। इनमें से कई अर्ध-मूल्यवान (semi-precious) रत्न हैं। विशेषतः यूरोप और मध्यपूर्व में तरह-तरह के क्वार्ट्ज अतिप्राचीन काल से आभूषण बनाने के काम में लिए जाते रहे हैं। क्वार्ट्ज शब्द ('quartz') जर्मन शब्द 'Quarz' से निकला है जिसका अर्थ 'कठोर' होता है। .

नई!!: ऊष्मा चालकता और स्फटिक · और देखें »

सोना

सोना या स्वर्ण (Gold) अत्यंत चमकदार मूल्यवान धातु है। यह आवर्त सारणी के प्रथम अंतर्ववर्ती समूह (transition group) में ताम्र तथा रजत के साथ स्थित है। इसका केवल एक स्थिर समस्थानिक (isotope, द्रव्यमान 197) प्राप्त है। कृत्रिम साधनों द्वारा प्राप्त रेडियोधर्मी समस्थानिकों का द्रव्यमान क्रमश: 192, 193, 194, 195, 196, 198 तथा 199 है। .

नई!!: ऊष्मा चालकता और सोना · और देखें »

सीसा

विद्युत अपघटन द्वारा शुद्ध किया हुआ सीस; १ घन सेमी से घन के साथ (तुलना के लिए) सीस, सीसा या लेड (अंग्रेजी: Lead, संकेत: Pb लैटिन शब्द प्लंबम / Plumbum से) एक धातु एवं तत्त्व है। काटने पर यह नीलिमा लिए सफ़ेद होता है, लेकिन हवा का स्पर्श होने पर स्लेटी हो जाता है। इसे इमारतें बनाने, विद्युत कोषों, बंदूक की गोलियाँ और वजन बनाने में प्रयुक्त किया जाता है। यह सोल्डर में भी मौजूद होता है। यह सबसे घना स्थिर तत्त्व है। यह एक पोस्ट-ट्रांज़िशन धातु है। इसका परमाणु क्रमांक ८२, परमाणु भार २०७.२१, घनत्व ११.३६, गलनांक ३,२७.४ डिग्री सें., क्वथनांक १६२०डिग्री से.

नई!!: ऊष्मा चालकता और सीसा · और देखें »

हाइड्रोजन

हाइड्रोजन पानी का एक महत्वपूर्ण अंग है शुद्ध हाइड्रोजन से भरी गैस डिस्चार्ज ट्यूब हाइड्रोजन (उदजन) (अंग्रेज़ी:Hydrogen) एक रासायनिक तत्व है। यह आवर्त सारणी का सबसे पहला तत्व है जो सबसे हल्का भी है। ब्रह्मांड में (पृथ्वी पर नहीं) यह सबसे प्रचुर मात्रा में पाया जाता है। तारों तथा सूर्य का अधिकांश द्रव्यमान हाइड्रोजन से बना है। इसके एक परमाणु में एक प्रोट्रॉन, एक इलेक्ट्रॉन होता है। इस प्रकार यह सबसे सरल परमाणु भी है। प्रकृति में यह द्विआण्विक गैस के रूप में पाया जाता है जो वायुमण्डल के बाह्य परत का मुख्य संघटक है। हाल में इसको वाहनों के ईंधन के रूप में इस्तेमाल कर सकने के लिए शोध कार्य हो रहे हैं। यह एक गैसीय पदार्थ है जिसमें कोई गंध, स्वाद और रंग नहीं होता है। यह सबसे हल्का तत्व है (घनत्व 0.09 ग्राम प्रति लिटर)। इसकी परमाणु संख्या 1, संकेत (H) और परमाणु भार 1.008 है। यह आवर्त सारणी में प्रथम स्थान पर है। साधारणतया इससे दो परमाणु मिलकर एक अणु (H2) बनाते है। हाइड्रोजन बहुत निम्न ताप पर द्रव और ठोस होता है।।इण्डिया वॉटर पोर्टल।०८-३०-२०११।अभिगमन तिथि: १७-०६-२०१७ द्रव हाइड्रोजन - 253° से.

नई!!: ऊष्मा चालकता और हाइड्रोजन · और देखें »

हिलियम

तरलीकृत हीलियम शुद्ध हीलियम से भरी गैस डिस्चार्ज ट्यूब हिलियम (Helium) एक रासायनिक तत्त्व है जो प्रायः गैसीय अवस्था में रहता है। यह एक निष्क्रिय गैस या नोबेल गैस (Noble gas) है तथा रंगहीन, गंधहीन, स्वादहीन, विष-हीन (नॉन-टॉक्सिक) भी है। इसका परमाणु क्रमांक २ है। सभी तत्वों में इसका क्वथनांक (boiling point) एवं गलनांक (melting point) सबसे कम है। द्रव हिलियम का प्रयोग पदार्थों को अत्यन्त कम ताप तक ठण्डा करने के लिये किया जाता है; जैसे अतिचालक तारों को १.९ डिग्री केल्विन तक ठण्डा करने के लिये। हीलियम अक्रिय गैसों का एक प्रमुख सदस्य है। इसका संकेत He, परमाणुभार ४, परमाणुसंख्या २, घनत्व ०.१७८५, क्रांतिक ताप -२६७.९०० और क्रांतिक दबाव २ २६ वायुमंडल, क्वथनांक -२६८.९० सें.

नई!!: ऊष्मा चालकता और हिलियम · और देखें »

हीरा

कोहिनूर की काँच प्रति कोहिनूर की एक और प्रति हीरों की आकृतियां हीरा एक पारदर्शी रत्न है। यह रासायनिक रूप से कार्बन का शुद्धतम रूप है। हीरा में प्रत्येक कार्बन परमाणु चार अन्य कार्बन परमाणुओं के साथ सह-संयोजी बन्ध द्वारा जुड़ा रहता है। कार्बन परमाणुओं के बाहरी कक्ष में उपस्थित सभी चारों इलेक्ट्रान सह-संयोजी बन्ध में भाग ले लेते हैं तथा एक भी इलेक्ट्रान संवतंत्र नहीं होता है। इसलिए हीरा ऊष्मा तथा विद्युत का कुचालन होता है। हीरा में सभी कार्बन परमाणु बहुत ही शक्तिशाली सह-संयोजी बन्ध द्वारा जुड़े होते हैं, इसलिए यह बहुत कठोर होता है। हीरा प्राक्रतिक पदार्थो में सबसे कठोर पदा‍र्थ है इसकी कठोरता के कारण इसका प्रयोग कई उद्योगो तथा आभूषणों में किया जाता है। हीरे केवल सफ़ेद ही नहीं होते अशुद्धियों के कारण इसका शेड नीला, लाल, संतरा, पीला, हरा व काला होता है। हरा हीरा सबसे दुर्लभ है। हीरे को यदि ओवन में ७६३ डिग्री सेल्सियस पर गरम किया जाये, तो यह जलकर कार्बन डाइ-आक्साइड बना लेता है तथा बिल्कूल ही राख नहीं बचती है। इससे यह प्रमाणित होता है कि हीरा कार्बन का शुद्ध रूप है। हीरा रासायनिक तौर पर बहुत निष्क्रिय होता है एव सभी घोलकों में अघुलनशील होता है। इसका आपेक्षिक घनत्व ३.५१ होता है। बहुत अधिक चमक होने के कारण हीरा को जवाहरात के रूप में उपयोग किया जाता है। हीरा उष्मीय किरणों के प्रति बहुत अधिक संवेदनशील होता है, इसलिए अतिशुद्ध थर्मामीटर बनाने में इसका उपयोग किया जाता है। काले हीरे का उपयोग काँच काटने, दूसरे हीरे के काटने, हीरे पर पालिश करने तथा चट्टानों में छेद करने के लिए किया जाता है। .

नई!!: ऊष्मा चालकता और हीरा · और देखें »

जल

जल या पानी एक आम रासायनिक पदार्थ है जिसका अणु दो हाइड्रोजन परमाणु और एक ऑक्सीजन परमाणु से बना है - H2O। यह सारे प्राणियों के जीवन का आधार है। आमतौर पर जल शब्द का प्प्रयोग द्रव अवस्था के लिए उपयोग में लाया जाता है पर यह ठोस अवस्था (बर्फ) और गैसीय अवस्था (भाप या जल वाष्प) में भी पाया जाता है। पानी जल-आत्मीय सतहों पर तरल-क्रिस्टल के रूप में भी पाया जाता है। पृथ्वी का लगभग 71% सतह को 1.460 पीटा टन (पीटी) (1021 किलोग्राम) जल से आच्छदित है जो अधिकतर महासागरों और अन्य बड़े जल निकायों का हिस्सा होता है इसके अतिरिक्त, 1.6% भूमिगत जल एक्वीफर और 0.001% जल वाष्प और बादल (इनका गठन हवा में जल के निलंबित ठोस और द्रव कणों से होता है) के रूप में पाया जाता है। खारे जल के महासागरों में पृथ्वी का कुल 97%, हिमनदों और ध्रुवीय बर्फ चोटिओं में 2.4% और अन्य स्रोतों जैसे नदियों, झीलों और तालाबों में 0.6% जल पाया जाता है। पृथ्वी पर जल की एक बहुत छोटी मात्रा, पानी की टंकिओं, जैविक निकायों, विनिर्मित उत्पादों के भीतर और खाद्य भंडार में निहित है। बर्फीली चोटिओं, हिमनद, एक्वीफर या झीलों का जल कई बार धरती पर जीवन के लिए साफ जल उपलब्ध कराता है। जल लगातार एक चक्र में घूमता रहता है जिसे जलचक्र कहते है, इसमे वाष्पीकरण या ट्रांस्पिरेशन, वर्षा और बह कर सागर में पहुॅचना शामिल है। हवा जल वाष्प को स्थल के ऊपर उसी दर से उड़ा ले जाती है जिस गति से यह बहकर सागर में पहँचता है लगभग 36 Tt (1012किलोग्राम) प्रति वर्ष। भूमि पर 107 Tt वर्षा के अलावा, वाष्पीकरण 71 Tt प्रति वर्ष का अतिरिक्त योगदान देता है। साफ और ताजा पेयजल मानवीय और अन्य जीवन के लिए आवश्यक है, लेकिन दुनिया के कई भागों में खासकर विकासशील देशों में भयंकर जलसंकट है और अनुमान है कि 2025 तक विश्व की आधी जनसंख्या इस जलसंकट से दो-चार होगी।.

नई!!: ऊष्मा चालकता और जल · और देखें »

जलवाष्प

जलवाष्प अथवा जल वाष्प पानी की गैसीय अवस्था है और अन्य अवस्थाओं के विपरीत अदृश्य होती है। पृथ्वी के वायुमण्डल में इसकी मात्रा लगातार परिवर्तनशील होती है। द्रव अवस्था में स्थित पानी से जलवाष्प का निर्माण क्वथन अथवा वाष्पीकरण के द्वारा होता रहता है और संघनन द्वारा जलवाष्प द्रव अवस्था में भी परिवर्तित होती रहती है। बर्फ़ से इसका निर्माण ऊर्ध्वपातन की प्रक्रिया द्वारा होता है। .

नई!!: ऊष्मा चालकता और जलवाष्प · और देखें »

जस्ता

जस्ता या ज़िन्क एक रासायनिक तत्व है जो संक्रमण धातु समूह का एक सदस्य है। रासायनिक दृष्टि से इसके गुण मैगनीसियम से मिलते-जुलते हैं। मनुष्य जस्ते का प्रयोग प्राचीनकाल से करते आये हैं। कांसा, जो ताम्बे व जस्ते की मिश्र धातु है, १०वीं सदी ईसापूर्व से इस्तेमाल होने के चिन्ह छोड़ गया है। ९वीं शताब्दी ईपू से राजस्थान में शुद्ध जस्ता बनाये जाने के चिन्ह मिलते हैं और ६ठीं शताब्दी ईपू की एक जस्ते की खान भी राजस्थान में मिली है। लोहे पर जस्ता चढ़ाने से लोहा ज़ंग खाने से बचा रहता है और जस्ते का प्रयोग बैट्रियों में भी बहुत होता है। .

नई!!: ऊष्मा चालकता और जस्ता · और देखें »

वायु

वायु पंचमहाभूतों मे एक हैं| अन्य है पृथिवी, जल, अग्नि व आकाश वायु वस्तुत: गैसो का मिश्रण है, जिसमे अनेक प्रकार की गैस जैसे जारक, प्रांगार द्विजारेय, नाट्रोजन, उदजन ईत्यादि शामिल है।.

नई!!: ऊष्मा चालकता और वायु · और देखें »

विद्युत चालकता

पदार्थों द्वारा विद्युत धारा संचालित करने की क्षमता के माप को विद्युत चालकता (Electrical conductivity) या विशिष्ट चालकता (specific conductance) कहते हैं। जब किसी पदार्थ से बने किसी 'चालक' के दो सिरों के बीच विभवान्तर आरोपित किया जाता है तो इसमें विद्यमान घूम सकने योग्य आवेश प्रवाहित होने लगते हैं जिसे विद्युत धारा कहते हैं। आंकिक रूप से धारा घनत्व \mathbf तथा विद्युत क्षेत्र की तीव्रता \mathbf के अनुपात को चालकता (σ) कहते हैं। अर्थात - विद्युत चालकता के व्युत्क्रम (reciprocal) राशि को विद्युत प्रतिरोधकता (ρ) कहते हैं जिसकी SI इकाई सिमेन्स प्रति मीटर (S·m-1) होती है। विद्युत चालकता के आधार पर पदार्थों को कुचालक, अर्धचालक, सुचालक तथा अतिचालक आदि कई वर्गों में बांटा जाता है जिनका अपना-अपना महत्व एवं उपयोग होता है चालकता ___(Conductance) जिस प्रकार प्रतिरोध, विधुत धारा प्रवाह का विरोध करता है उसी प्रकार चालकता प्रतिरोध के प्रभाव के विपरीत है, परंतु चालकता विधुत धारा प्रवाह को सुगमता प्रदान करती है। .

नई!!: ऊष्मा चालकता और विद्युत चालकता · और देखें »

गुप्त ऊष्मा

जब कोई पदार्थ एक भौतिक अवस्था (जैसे ठोस) से दूसरी भौतिक अवस्था (जैसे द्रव) में परिवर्तित होता है तो एक नियत ताप पर उसे कुछ उष्मा प्रदान करनी पड़ती है या वह एक नियत ताप पर उष्मा प्रदान करता है। किसी पदार्थ की गुप्त उष्मा (latent heat), उष्मा की वह मात्रा है जो उसके इकाई मात्रा द्वारा अवस्था परिवर्तन (change of state) के समय अवषोषित की जाती है या मुक्त की जाती है। इसके अलावा पदार्थ जब अपनी कला (फेज) बदलते हैं तब भी गुप्त उष्मा के बराबर उष्मा का अदान/प्रदान करना पड़ता है। इस शब्द का सर्वप्रथम प्रयोग सन् १७५० के आसपास जोसेफ ब्लैक ने किया था। आजकल इसके स्थान पर "इन्थाल्पी ऑफ ट्रान्सफार्मेशन" का प्रयोग किया जाता है। .

नई!!: ऊष्मा चालकता और गुप्त ऊष्मा · और देखें »

ग्रेफाइट

ग्रेफाइट ग्रेफाइट कार्बन का एक बहुरूप है। काले भूरे रंग का यह अधातु सिंहल, साइबेरिया, अमेरिका के केलिफोर्निया, कोरिया, न्यूजीलैण्ड तथा इटली में पाया जाता है। इसमें एक विशेष प्रकार की चमक पायी जाती है एवं यह विद्युत तथा ताप का सुचालक होता है। इसका आपेक्षिक घनत्व 2.25 है। यह 7000C पर जलकर कार्बन डाई-आक्साइड बनाता है। .

नई!!: ऊष्मा चालकता और ग्रेफाइट · और देखें »

गैडोलिनियम

एक भौतिक तत्त्व है। इसका सिंबल 'gd' और एटॉमिक नंबर 64 है। यह रंग में चांदी जैसा है, और बहुत ही कम पाया जाता है। .

नई!!: ऊष्मा चालकता और गैडोलिनियम · और देखें »

गैस

गैसों का कण मॉडल: गैसों के कणों के बीच की औसत दूरी अपेक्षाकृत अधिक होती है। गैस (Gas) पदार्थ की तीन अवस्थाओं में से एक अवस्था का नाम है (अन्य दो अवस्थाएँ हैं - ठोस तथा द्रव)। गैस अवस्था में पदार्थ का न तो निश्चित आकार होता है न नियत आयतन। ये जिस बर्तन में रखे जाते हैं उसी का आकार और पूरा आयतन ग्रहण कर लेते हैं। जीवधारियों के लिये दो गैसे मुख्य हैं, आक्सीजन गैस जिसके द्वारा जीवधारी जीवित रहता है, दूसरी जिसे जीवधारी अपने शरीर से छोड़ते हैं, उसका नाम कार्बन डाई आक्साइड है। इनके अलावा अन्य गैसों का भी बहु-प्रयोग होता है, जैसे खाना पकाने वाली रसोई गैस। पानी दो गैसों से मिलकर बनता है, आक्सीजन और हाइड्रोजन। .

नई!!: ऊष्मा चालकता और गैस · और देखें »

ऑक्सीजन

ऑक्सीजन या प्राणवायु या जारक (Oxygen) रंगहीन, स्वादहीन तथा गंधरहित गैस है। इसकी खोज, प्राप्ति अथवा प्रारंभिक अध्ययन में जे.

नई!!: ऊष्मा चालकता और ऑक्सीजन · और देखें »

आर्गन

आर्गन एक रासायनिक तत्व है। यह एक निष्क्रिय गैस है। नाइट्रोजन और ओक्सीजन के बाद यह पृथ्वी के वायुमण्डल की तीसरी सबसे अधिक मात्रा की गैस है। औसतन पृथ्वी की वायु का ०.९३% आर्गन है। यह अगली सर्वाधिक मात्रा की गैस, कार्बन डायोक्साइड, से लगभग २३ गुना अधिक है। यह पृथ्वी की सर्वाधिक मात्रा में मौजूद निष्क्रिय गैस भी है और अगली सबसे ज़्यादा मात्रा की निष्क्रिय गैस, नीयोन, से ५०० गुना अधिक मात्रा में वायुमण्डल में उपस्थित है। आर्गन को वायु से प्रभाजी आसवन (फ़्रैक्शनल डिस्टिलेशन) की प्रक्रिया द्वारा अलग किया जाता है। इसे उद्योग में और बिजली के बल्ब आदि में काफ़ी प्रयोग किया जाता है। .

नई!!: ऊष्मा चालकता और आर्गन · और देखें »

काग़ज़

कागज का पुलिन्दा चीन में कागज का निर्माण कागज एक पतला पदार्थ है जिस पर लिखा या प्रिन्ट किया जाता है। कागज मुख्य रूप से लिखने और छपाई के लिए प्रयुक्त होता है। यह वस्तुओं की पैकेजिंग करने के काम भी आता है। मानव सभ्यता के विकास में कागज का बहुत बड़ा योगदान है। गीले तन्तुओं (फाइबर्स्) को दबाकर एवं तत्पश्चात सुखाकर कागज बनाया जाता है। ये तन्तु प्राय: सेलुलोज की लुगदी (पल्प) होते हैं जो लकड़ी, घास, बांस, या चिथड़ों से बनाये जाते हैं। पौधों में सेल्यूलोस नामक एक कार्बोहाइड्रेट होता है। पौधों की कोशिकाओं की भित्ति सेल्यूलोज की ही बनी होतीं है। अत: सेल्यूलोस पौधों के पंजर का मुख्य पदार्थ है। सेल्यूलोस के रेशों को परस्पर जुटाकर एकसम पतली चद्दर के रूप में जो वस्तु बनाई जाती है उसे कागज कहते हैं। कोई भी पौधा या पदार्थ, जिसमें सेल्यूलोस अच्छी मात्रा में हो, कागज बनाने के लिए उपयुक्त हो सकता है। रुई लगभग शुद्ध सेल्यूलोस है, किंतु कागज बनाने में इसका उपयोग नहीं किया जाता क्योंकि यह महँगी होती है और मुख्य रूप से कपड़ा बनाने के काम में आती है। परस्पर जुटकर चद्दर के रूप में हो सकने का गुण सेल्यूलोस के रेशों में ही होता है, इस कारण कागज केवल इसी से बनाया जा सकता है। रेशम और ऊन के रेशों में इस प्रकार परस्पर जुटने का गुण न होने के कारण ये कागज बनाने के काम में नहीं आ सकते। जितना अधिक शुद्ध सेल्यूलोस होता है, कागज भी उतना ही स्वच्छ और सुंदर बनता है। कपड़ों के चिथड़े तथा कागज की रद्दी में लगभग शतप्रतिशत सेल्यूलोस होता है, अत: इनसे कागज सरलता से और अच्छा बनता है। इतिहासज्ञों का ऐसा अनुमान है कि पहला कागज कपड़ों के चिथड़ों से ही चीन में बना था। पौधों में सेल्यूलोस के साथ अन्य कई पदार्थ मिले रहते हैं, जिनमें लिग्निन और पेक्टिन पर्याप्त मात्रा में तथा खनिज लवण, वसा और रंग पदार्थ सूक्ष्म मात्राओं में रहते हैं। इन पदार्थों को जब तक पर्याप्त अंशतक निकालकर सूल्यूलोस को पृथक रूप में नहीं प्राप्त किया जाता तब तक सेल्यूलोस से अच्छा कागज नहीं बनाया जा सकता। लिग्निन का निकालना विशेष आवश्यक होता है। यदि लिग्निन की पर्याप्त मात्रा में सेल्यूलोस में विद्यमान रहती है तो सेल्यूलोस के रेशे परस्पर प्राप्त करना कठिन होता है। आरंभ में जब तक सेल्यूलोस को पौधों से शुद्ध रूप में प्राप्त करने की कोई अच्छी विधि ज्ञात नहीं हो सकी थी, कागज मुख्य रूप से फटे सूती कपड़ों से ही बनाया जाता था। चिथड़ों तथा कागज की रद्दी से यद्यपि कागज बहुत सरलता से और उत्तम कोटि का बनता है, तथापि इनकी इतनी मात्रा का मिल सकना संभव नहीं है कि कागज़ की हामरी पूरी आवश्यकता इनसे बनाए गए कागज से पूरी हो सके। आजकल कागज बनाने के लिए निम्नलिखित वस्तुओं का उपयोग मुख्य रूप से होता है: चिथड़े, कागज की रद्दी, बाँस, विभिन्न पेड़ों की लकड़ी, जैसे स्प्रूस और चीड़, तथा विविध घासें जैसे सबई और एस्पार्टो। भारत में बाँस और सबई घास का उपयोग कागज बनाने में मुख्य रूप से होता है। .

नई!!: ऊष्मा चालकता और काग़ज़ · और देखें »

कांच

स्वच्छ पारदर्शी कांच का बना प्रकाश बल्ब काच, काँच या कांच (glass) एक अक्रिस्टलीय ठोस पदार्थ है। कांच आमतौर भंगुर और अक्सर प्रकाशीय रूप से पारदर्शी होते हैं। काच अथव शीशा अकार्बनिक पदार्थों से बना हुआ वह पारदर्शक अथवा अपारदर्शक पदार्थ है जिससे शीशी बोतल आदि बनती हैं। काच का आविष्कार संसार के लिए बहुत बड़ी घटना थी और आज की वैज्ञानिक उन्नति में काच का बहुत अधिक महत्व है। किन्तु विज्ञान की दृष्टि से 'कांच' की परिभाषा बहुत व्यापक है। इस दृष्टि से उन सभी ठोसों को कांच कहते हैं जो द्रव अवस्था से ठण्डा होकर ठोस अवस्था में आने पर क्रिस्टलीय संरचना नहीं प्राप्त करते। सबसे आम काच सोडा-लाइम काच है जो शताब्दियों से खिड़कियाँ और गिलास आदि बनाने के काम में आ रहा है। सोडा-लाइम कांच में लगभग 75% सिलिका (SiO2), सोडियम आक्साइड (Na2O) और चूना (CaO) और अनेकों अन्य चीजें कम मात्रा में मिली होती हैं। काँच यानी SiO2 जो कि रेत का अभिन्न अंग है। रेत और कुछ अन्य सामग्री को एक भट्टी में लगभग 1500 डिग्री सैल्सियस पर पिघलाया जाता है और फिर इस पिघले काँच को उन खाँचों में बूंद-बूंद करके उंडेला जाता है जिससे मनचाही चीज़ बनाई जा सके। मान लीजिए, बोतल बनाई जा रही है तो खाँचे में पिघला काँच डालने के बाद बोतल की सतह पर और काम किया जाता है और उसे फिर एक भट्टी से गुज़ारा जाता है। .

नई!!: ऊष्मा चालकता और कांच · और देखें »

कांसा

कांसे की प्राचीन ढलाई। कांसा या कांस्य, किसी तांबे या ताम्र-मिश्रित धातु मिश्रण को कहा जाता है, प्रायः जस्ते के संग, परंतु कई बार फासफोरस, मैंगनीज़, अल्युमिनियम या सिलिकॉन आदि के संग भी होते हैं। (देखें अधोलिखित सारणी.) यह पुरावस्तुओं में महत्वपूर्ण था, जिसने उस युग को कांस्य युग नाम दिया। इसे अंग्रेजी़ में ब्रोंज़ कहते हैं, जो की फारसी मूल का शब्द है, जिसका अर्थ पीतल है। काँसा (संस्कृत कांस्य) संस्कृत कोशों के अनुसार श्वेत ताँबे अथवा घंटा बनाने की धातु को कहते हैं। विशुद्ध ताँबा लाल होता है; उसमें राँगा मिलाने से सफेदी आती है। इसलिए ताँबे और राँगे की मिश्रधातु को काँसा या कांस्य कहते हैं। साधारण बोलचाल में कभी–कभी पीतल को भी काँसा कह देते हैं, जा ताँबे तथा जस्ते की मिश्रधातु है और पीला होता है। ताँबे और राँगे की मिश्रधातु को 'फूल' भी कहते हैं। इस लेख में काँसा से अभिप्राय ताँबे और राँगे की मिश्रधातु से है। अंग्रेजी में इसे ब्रॉज (bronze) कहते हैं। काँसा, ताँबे की अपेक्षा अधिक कड़ा होता है और कम ताप पर पिघलता है। इसलिए काँसा सुविधापूर्वक ढाला जा सकता है। 16 भाग ताँबे और 1 भाग राँगे की मिश्रधातु बहुत कड़ी नहीं होती। इसे नरम गन-मेटल (gun-metal) कहते हैं। राँगे का अनुपात दुगुना कर देने से कड़ा गन-मेटल बनता है। 7 भाग ताँबा और 1 भाग राँगा रहने पर मिश्रधातु कड़ी, भंगुर और सुस्वर होती है। घंटा बनाने के लिए राँगे का अनुपात और भी बढ़ा दिया जाता है; साधारणत: 3 से 5 भाग तक ताँबे और 1 भाग राँगे की मिश्रधातु इस काम में लिए प्रयुक्त होती है। दर्पण बनाने के लिए लगभग 2 भाग ताँबा और एक भाग राँगे का उपयोग होता था, परंतु अब तो चाँदी की कलईवाले काँच के दर्पणों के आगे इसका प्रचलन मिट गया है। मशीनों के धुरीधरों (bearings) के लिए काँसे का बहुत प्रयोग होता है, क्योंकि घर्षण (friction) कम होता है, परंतु धातु को अधिक कड़ी कर देने के उद्देश्य से उसमें कुछ अन्य धातुएँ भी मिला दी जाती हैं। उदाहरणत:, 24 अथवा अधिक भाग राँगा, 4 भाग ताँबा और 8 भाग ऐंटिमनी प्रसिद्ध 'बैबिट' मेटल है जिसका नाम आविष्कारक आइज़क (Issac Babiitt) पर पड़ा है। इसका धुरीधरों के लिए बहुत प्रयोग होता है। काँसे में लगभग 1 प्रतिशत फ़ास्फ़ोरस मिला देने से मिश्रधातु अधिक कड़ी और चिमड़ी हो जाती है। ऐसी मिश्रधातु को फ़ॉस्फ़र ब्रॉज कहते हैं। ताँबे आर ऐल्युमिनियम की मिश्रधातु को ऐल्युमिनियम ब्रॉंज़ कहते हैं। यह धातु बहुत पुष्ट होती है और हवा या पानी में इसका अपक्षरण नहीं होता। .

नई!!: ऊष्मा चालकता और कांसा · और देखें »

कंक्रीट

वाणिज्यिक भवन के लिये कंक्रीट बिछायी जा रही है। कंक्रीट (Concrete) एक निर्माण सामग्री है जो सीमेंट एवं कुछ अन्य पदार्थों का मिश्रण होती है। कंक्रीट की यह विशेषता है कि यह पानी मिलाकर छोड़ देने के बाद धीरे-धीरे ठोस एवं कठोर बन जाता है। इस प्रक्रिया को जलीकरण (Hydration) कहते है। इस रासायनिक क्रिया में पानी, सिमेन्ट के साथ क्रिया करके पत्थर जैसा कठोर पदार्थ बनाती है जिसमें अन्य चीजें बंध जातीं हैं। कंक्रीट का प्रयोग सड़क बनाने, पाइप निर्माण, भवन निर्माण, नींव बनाने, पुल आदि बनाने में होता है। कंक्रीट का उपयोग 2000 ई.पू.

नई!!: ऊष्मा चालकता और कंक्रीट · और देखें »

क्रिप्टॉन

क्रिप्टॉन एक रासायनिक तत्व है जो निष्क्रिय गैसों के समूह में आता है। इसका परमाणु क्रमांक 36 है। यह एक रंगहीन, गंधहीन और स्वादहीन गैस है जो बहुत ही छोटी मात्रा में हमारे वायुमंडल में पाई जाती है। इसका प्रयोग बिजली के बल्ब बनाने में और फ़ोटोग्राफ़ी में किया जाता है। जब इसे प्लाज़्मा स्थिति में लाया जाता है तो यह बहुत तरंगदैर्ध्यों (वेवलेन्थ) पर प्रकाश उत्पन्न करती है। इस वजह से इसे लेज़र बनाने में भी प्रयोग किया जाता है। .

नई!!: ऊष्मा चालकता और क्रिप्टॉन · और देखें »

क्लोरोफॉर्म

क्लोरोफ़ॉर्म (अंग्रेज़ी:Chloroform) या ट्राईक्लोरो मिथेन (अंग्रेज़ी:Trichloro methane) एक कार्बनिक यौगिक है, जिसका रासयनिक सूत्र CHCl3 है। यह एक रंगहीन और सुगंधित तरल पदार्थ होता है जिसे चिकित्सा क्षेत्र में किसी रोगी को शल्य क्रिया किए जाने के लिए मूर्छित करने हेतु निष्चेतक। याहू जागरण।। डॉ॰ मुमुक्षु दीक्षित: सीनियर कन्सल्टेट एनेस्थेटिस्ट।१४ अक्टूबर, २००८ के रूप में प्रयोग किया जाता था। ।हिन्दुस्तान लाइव।२९ अक्टूबर, २००९।। निश्चेतना विज्ञान (एनेस्थीसिया) के अंतर्गत निष्चेतक देने वाले डॉक्टर के तीन महत्वपूर्ण प्रयोजन होते हैं, जिनमें पहला, शल्य-क्रिया के लिए रोगी को मूर्छा की स्थिति में पहुंचाकर उसे पुन: सकुशल अवस्था में लाना होता है। इसके बाद दूसरा काम रोगी को दर्द से छुटकारा दिलाना तथा तीसरा काम शल्य-चिकित्सक की आवश्यकतानुसार रोगी की मांसपेशियों को कुछ ढीला करने का प्रयास करना होता है। आरंभिक काल में एक ही निष्चेतक यानि ईथर या क्लोरोफॉर्म से उपरोक्त तीनों काम किये जाते थे, किंतु क्लोरोफॉर्म की मात्रा के कम या अधिक होने से रोगी पर सुरक्षापूर्वक वांछित परिणाम नहीं मिल पाते थे, जिस कारण से चिकित्सा विज्ञान में अनेक शोध जारी रहे और आज इस क्षेत्र में हुई प्रगति से संतुलित निष्चेतक के माध्यम से रोगियों को भिन्न-भिन्न औषधियों के प्रभाव से आवश्यकतानुरूप वांछित परिणाम मिलते हैं। वर्तमान चिकित्सा में इसका प्रयोग बंद कर दिया गया है। आज क्लोरोफॉर्म का प्रयोग रसायन और साबुन इत्यादि बनाने में किया जाता है। इसका निर्माण इथेनॉल के साथ क्लोरीन की अभिक्रिया कराने के बाद होता है। यह विषैला होता है और इस कारण इसे सावधानीपूर्वक प्रयोग किया जाना चाहिए। क्लोरोफॉर्म के अधिक निकटस्थ प्रयोग रहने से शरीर के कई अंगों पर बुरा असर पड़ सकता है। .

नई!!: ऊष्मा चालकता और क्लोरोफॉर्म · और देखें »

क्लोरीन

क्लोरीन (यूनानी: χλωρóς (ख्लोरोस), 'फीका हरा') एक रासायनिक तत्व है, जिसकी परमाणु संख्या १७ तथा संकेत Cl है। ऋणात्मक आयन क्लोराइड के रूप में यह साधारण नमक में उपस्थित होती है और सागर के जल में घुले लवण में प्रचुर मात्रा में पाई जाती है।। हिन्दुस्तान लाइव। ३१ मई २०१० सामान्य तापमान और दाब पर क्लोरीन (Cl2 या "डाईक्लोरीन") गैस के रूप में पायी जाती है। इसका प्रयोग तरणतालों को कीटाणुरहित बनाने में किया जाता है। यह एक हैलोजन है और आवर्त सारणी में समूह १७ (पूर्व में समूह ७, ७ए या ७बी) में रखी गयी है। यह एक पीले और हरे रंग की हवा से हल्की प्राकृतिक गैस जो एक निश्चित दाब और तापमान पर द्रव में बदल जाती है। यह पृथ्वी के साथ ही समुद्र में भी पाई जाती है। क्लोरीन पौधों और मनुष्यों के लिए आवश्यक है। इसका प्रयोग कागज और कपड़े बनाने में किया जाता है। इसमें यह ब्लीचिंग एजेंट (धुलाई करने वाले/ रंग उड़ाने वाले द्रव्य) के रूप में काम में लाई जाती है। वायु की उपस्थिति में यह जल के साथ क्रिया कर हाइड्रोक्लोरिक अम्ल का निर्माण करती है। मूलत: गैस होने के कारण यह खाद्य श्रृंखला का भाग नहीं है। यह गैस स्वास्थ्य के लिए हानिकारक होती है। तरणताल में इसका प्रयोग कीटाणुनाशक की तरह किया जाता है। साधारण धुलाई में इसे ब्लीचिंग एजेंट रूप में प्रयोग करते हैं। ब्लीच और कीटाणुनाशक बनाने के कारखाने में काम करने वाले लोगों में इससे प्रभावित होने की आशंका अधिक रहती है। यदि कोई लंबे समय तक इसके संपर्क में रहता है तो उसके स्वास्थ्य पर हानिकारक प्रभाव पड़ता है। इसकी तेज गंध आंखों, त्वचा और श्वसन तंत्र के लिए हानिकारक होती है। इससे गले में घाव, खांसी और आंखों व त्वचा में जलन हो सकती है, इससे सांस लेने में समस्या होती है। .

नई!!: ऊष्मा चालकता और क्लोरीन · और देखें »

यहां पुनर्निर्देश करता है:

ऊष्मा चालक, उष्मा चालकता

निवर्तमानआने वाली
अरे! अब हम फेसबुक पर हैं! »