लोगो
यूनियनपीडिया
संचार
Google Play पर पाएं
नई! अपने एंड्रॉयड डिवाइस पर डाउनलोड यूनियनपीडिया!
मुक्त
ब्राउज़र की तुलना में तेजी से पहुँच!
 

क्रिस्टलता

सूची क्रिस्टलता

क्रिस्टलता (crystallinity) किसी ठोस पदार्थ में ढांचे की सुव्यवस्था के माप को कहते हैं। क्रिस्टलों में परमाणु या अणु एक नियत व आवर्ती क्रम में सज्जित होते हैं। क्रिस्टलता काष्ठा (degree of crystallinity) का पदार्थ की कठोरता, घनत्व, पारदर्शिता और विसरण के गुणों पर भारी प्रभाव पड़ता है। .

23 संबंधों: एक्स-किरण क्रिस्टलिकी, ठोस, द्रव, परमाणु, पारदर्शिता और पारभासकता, पॉलीमर, भार, मिश्रातु, मृत्तिकाशिल्प, रमन स्पेक्ट्रमिकी, सिलिकॉन, घनत्व, विसरण, गैस, आयतन, इलैक्ट्रॉनिक्स, कठोरता, कांच, क्रिस्टल, कैलोरीमिति, अणु, अनियत ठोस, अर्धचालक पदार्थ

एक्स-किरण क्रिस्टलिकी

एक्स-किरण क्रिस्टलिकी द्वारा किसी अणु की संरचना ज्ञात करने की प्रक्रिया एक्स-किरण क्रिस्टलिकी (X-ray crystallography) क्रिस्टल की परमाणविक एवं आणविक संरचना जानने का एक औजार है। इस विधि में क्रिस्टलीय परमाणु आपतित एक्स-किरण को विभिन्न दिशाओं में विवर्तित कर देते हैं। इन विवर्तित एक्स-किर्णों की दिशा और उनकी तीव्रता क्रिस्टल की संरचना से सम्बन्धित है। अतः विवर्तित किरणों की दिशा और तीव्रता के ज्ञान से इन क्रिस्टलों की त्रिबीमीय छबि बनायी जा सकती है। .

नई!!: क्रिस्टलता और एक्स-किरण क्रिस्टलिकी · और देखें »

ठोस

ठोस (solid) पदार्थ की एक अवस्था है, जिसकी पहचान पदार्थ की संरचनात्मक दृढ़ता और विकृति (आकार, आयतन और स्वरूप में परिवर्तन) के प्रति प्रत्यक्ष अवरोध के गुण के आधार पर की जाती है। ठोस पदार्थों में उच्च यंग मापांक और अपरूपता मापांक होते है। इसके विपरीत, ज्यादातर तरल पदार्थ निम्न अपरूपता मापांक वाले होते हैं और श्यानता का प्रदर्शन करते हैं। भौतिक विज्ञान की जिस शाखा में ठोस का अध्ययन करते हैं, उसे ठोस-अवस्था भौतिकी कहते हैं। पदार्थ विज्ञान में ठोस पदार्थों के भौतिक और रासायनिक गुणों और उनके अनुप्रयोग का अध्ययन करते हैं। ठोस-अवस्था रसायन में पदार्थों के संश्लेषण, उनकी पहचान और रासायनिक संघटन का अध्ययन किया जाता है। .

नई!!: क्रिस्टलता और ठोस · और देखें »

द्रव

द्रव का कोई निश्चित आकार नहीं होता। द्रव जिस पात्र में रखा जाता है उसी का आकार ग्रहण कर लेता है। प्रकृति में सभी रासायनिक पदार्थ साधारणत: ठोस, द्रव और गैस तथा प्लाज्मा - इन चार अवस्थाओं में पाए जाते हैं। द्रव और गैस प्रवाहित हो सकते हैं, किंतु ठोस प्रवाहित नहीं होता। लचीले ठोस पदार्थों में आयतन अथवा आकार को विकृत करने से प्रतिबल उत्पन्न होता है। अल्प विकृतियों के लिए विकृति और प्रतिबल परस्पर समानुपाती होते हैं। इस गुण के कारण लचीले ठोस एक निश्चित मान तक के बाहरी बलों को सँभालने की क्षमता रखते हैं। प्रवाह का गुण होने के कारण द्रवों और गैसों को तरल पदार्थ (fluid) कहा जाता है। ये पदार्थ कर्तन (shear) बलों को सँभालने में अक्षम होते हैं और गुरुत्वाकर्षण के प्रभाव के कारण प्रवाहित होकर जिस बरतन में रखे रहते हैं, उसी का आकार धारण कर लेते हैं। ठोस और तरल का यांत्रिक भेद बहुत स्पष्ट नहीं है। बहुत से पदार्थ, विशेषत: उच्च कोटि के बहुलक (polymer) के यांत्रिक गुण, श्यान तरल (viscous fluid) और लचीले ठोस के गुणों के मध्यवर्ती होते हैं। प्रत्येक पदार्थ के लिए एक ऐसा क्रांतिक ताप (critical temperature) पाया जाता है, जिससे अधिक होने पर पदार्थ केवल तरल अवस्था में रह सकता है। क्रांतिक ताप पर पदार्थ की द्रव और गैस अवस्था में विशेष अंतर नहीं रह जाता। इससे नीचे के प्रत्येक ताप पर द्रव के साथ उसका कुछ वाष्प भी उपस्थित रहता है और इस वाष्प का कुछ निश्चित दबाव भी होता है। इस दबाव को वाष्प दबाव कहते हैं। प्रत्येक ताप पर वाष्प दबाव का अधिकतम मान निश्चित होता है। इस अधिकतम दबाव को संपृक्त-वाष्प-दबाव के बराबर अथवा उससे अधिक हो, तो द्रव स्थायी रहता है। यदि ऊपरी दबाव द्रव के संपृक्तवाष्प-दबाव से कम हो, तो द्रव अस्थायी होता है। संपृक्त-वाष्प-दबाव ताप के बढ़ने से बढ़ता है। जिस ताप पर द्रव का संपृक्त-वाष्प-दबाव बाहरी वातावरण के दबाव के बराबर हो जाता है, उसपर द्रव बहुत तेजी से वाष्पित होने लगता है। इस ताप को द्रव का क्वथनांक (boiling point) कहते हैं। यदि बाहरी दबाव सर्वथा स्थायी हो तो क्वथनांक से नीचे द्रव स्थायी रहता है। क्वथनांक पर पहुँचने पर यह खौलने लगता है। इस दशा में यह ताप का शोषण करके द्रव अवस्था से गैस अवस्था में परिवर्तित होने लगता है। क्वथनांक पर द्रव के इकाई द्रव्यमान को द्रव से पूर्णत: गैस में परिवर्तित करने के लिए जितने कैलोरी ऊष्मा की आवश्यकता होती है, उसे द्रव के वाष्पीभवन की गुप्त ऊष्मा कहते हैं। विभिन्न द्रव पदार्थों के लिए इसका मान भिन्न होता है। एक नियत दबाव पर ठोस और द्रव दोनों रूप साथ साथ एक निश्चित ताप पर पाए जा सकते हैं। यह ताप द्रव का हिमबिंदु या ठोस का द्रवणांक कहलाता है। द्रवणांक पर पदार्थ के इकाई द्रव्यमान को ठोस से पूर्णत: द्रव में परिवर्तित करने में जितनी ऊष्मा की आवश्यकता होती है, उसे ठोस के गलन की गुप्त ऊष्मा कहते हैं। अक्रिस्टली पदार्थों के लिए कोई नियत गलनांक नहीं पाया जाता। वे गरम करने पर धीरे धीरे मुलायम होते जाते हैं और फिर द्रव अवस्था में आ जाते हैं। काँच तथा काँच जैसे अन्य पदार्थ इसी प्रकार का व्यवहार करते हैं। एक नियत ताप और नियत दबाव पर प्रत्येक द्रव्य की तीनों अवस्थाएँ एक साथ विद्यमान रह सकती हैं। दबाव और ताप के बीच खीचें गए आरेख (diagram) में ये नियत ताप और दबाव एक बिंदु द्वारा प्रदर्शित किए जाते हैं। इस बिंदु को द्रव का त्रिक् बिंदु (triple point) कहते हैं। त्रिक् विंदु की अपेक्षा निम्न दाबों पर द्रव अस्थायी रहता है। यदि किसी ठोस को त्रिक् विंदु की अपेक्षा निम्न दबाव पर रखकर गरम किया जाए तो वह बिना द्रव बने ही वाष्प में परिवर्तित हो जाता है, अर्थात् ऊर्ध्वपातित (sublime) हो जाता है। द्रव के मुक्त तल में, जो उस द्रव के वाष्प या सामान्य वायु के संपर्क में रहता है, एक विशेष गुण पाया जाता है, जिसके कारण यह तल तनी हुई महीन झिल्ली जैसा व्यवहार करता है। इस गुण को पृष्ठ तनाव (surface tension) कहते हैं। पृष्ठ तनाव के कारण द्रव के पृष्ठ का क्षेत्रफल यथासंभव न्यूनतम होता है। किसी दिए आयतन के लिए सबसे कम क्षेत्रफल एक गोले का होता है। अत: ऐसी स्थितियों में जब कि बाहरी बल नगण्य माने जा सकते हों द्रव की बूँदे गोल होती हैं। जब कोई द्रव किसी ठोस, या अन्य किसी अमिश्रय द्रव, के संपर्क में आता है तो भी संपर्क तल पर तनाव उत्पन्न होता है। साधारणत: कोई भी पदार्थ केवल एक ही प्रकार के द्रव रूप में प्राप्त होता है, किंतु इसके कुछ अपवाद भी मिलते हैं, जैसे हीलियम गैस को द्रवित करके दो प्रकार के हीलियम द्रव प्राप्त किए जा सकते हैं। उसी प्रकार पैरा-ऐज़ॉक्सी-ऐनिसोल (Para-azoxy-anisole) प्रकाशत: विषमदैशिक (anisotropic) द्रव के रूप में, क्रिस्टलीय अवस्था में तथा सामान्य द्रव के रूप में भी प्राप्त हो सकता है। .

नई!!: क्रिस्टलता और द्रव · और देखें »

परमाणु

एक परमाणु किसी भी साधारण से पदार्थ की सबसे छोटी घटक इकाई है जिसमे एक रासायनिक तत्व के गुण होते हैं। हर ठोस, तरल, गैस, और प्लाज्मा तटस्थ या आयनन परमाणुओं से बना है। परमाणुओं बहुत छोटे हैं; विशिष्ट आकार लगभग 100 pm (एक मीटर का एक दस अरबवें) हैं। हालांकि, परमाणुओं में अच्छी तरह परिभाषित सीमा नहीं होते है, और उनके आकार को परिभाषित करने के लिए अलग अलग तरीके होते हैं जोकि अलग लेकिन काफी करीब मूल्य देते हैं। परमाणुओं इतने छोटे है कि शास्त्रीय भौतिकी इसका काफ़ी गलत परिणाम देते हैं। हर परमाणु नाभिक से बना है और नाभिक एक या एक से अधिक इलेक्ट्रॉन्स से सीमित है। नाभिक आम तौर पर एक या एक से अधिक न्यूट्रॉन और प्रोटॉन की एक समान संख्या से बना है। प्रोटान और न्यूट्रान न्यूक्लिऑन कहलाता है। परमाणु के द्रव्यमान का 99.94% से अधिक भाग नाभिक में होता है। प्रोटॉन पर सकारात्मक विद्युत आवेश होता है, इलेक्ट्रॉन्स पर नकारात्मक विद्युत आवेश होता है और न्यूट्रान पर कोई भी विद्युत आवेश नहीं होता है। एक परमाणु के इलेक्ट्रॉन्स इस विद्युत चुम्बकीय बल द्वारा एक परमाणु के नाभिक में प्रोटॉन की ओर आकर्षित होता है। नाभिक में प्रोटॉन और न्यूट्रॉन एक अलग बल, यानि परमाणु बल के द्वारा एक दूसरे को आकर्षित करते है, जोकि विद्युत चुम्बकीय बल जिसमे सकारात्मक आवेशित प्रोटॉन एक दूसरे से पीछे हट रहे हैं, की तुलना में आम तौर पर शक्तिशाली है। परमाणु के केन्द्र में नाभिक (न्यूक्लिअस) होता है जिसका घनत्व बहुत अधिक होता है। नाभिक के चारो ओर ऋणात्मक आवेश वाले एलेक्ट्रान चक्कर लगाते रहते हैं जिसको एलेक्ट्रान घन (एलेक्ट्रान क्लाउड) कहते हैं। नाभिक, धनात्मक आवेश वाले प्रोटानों एवं अनावेशित (न्यूट्रल) न्यूट्रानों से बना होता है। जब किसी परमाणु में एलेक्ट्रानों की संख्या उसके नाभिक में स्थित प्रोटानों की संख्या के समान होती है तब परमाणु वैद्युकीय दृष्टि से अनावेशित होता है; अन्यथा परमाणु धनावेशित या ऋणावेशित ऑयन के रूप में होता है। आधुनिक रसायनशास्त्र में शताधिक मूल भूत माने गए हैं, जिनमें से कुछ तो धातुएँ हैं जैसे ताँबा, सोना, लोहा, सीसा, चाँदी, राँगा, जस्ता; कुछ और खनिज हैं, जैसे, गंधक, फासफरस, पोटासियम, अंजन, पारा, हड़ताल, तथा कुछ गैस हैं, जैसे, आक्सीजन, नाइट्रोजन, हाइड्रोजन आदि। इन्हीं मूल भूतों के अनुसार परमाणु आधुनिक रसायन में माने जाते हैं। पहले समझा जाता था कि ये अविभाज्य हैं। अब इनके भी टुकड़े कर दिए गए हैं। नाभिक में प्रोटॉन की संख्या किसी रासायनिक तत्व को परिभाषित करता है: जैसे सभी तांबा के परमाणु में 29 प्रोटॉन होते हैं। न्यूट्रॉन की संख्या तत्व के समस्थानिक को परिभाषित करता है। इलेक्ट्रॉनों की संख्या एक परमाणु के चुंबकीय गुण को प्रभावित करता है। परमाणु अणु के रूप में रासायनिक यौगिक बनाने के लिए रासायनिक आबंध द्वारा एक या अधिक अन्य परमाणुओं को संलग्न कर सकते हैं। परमाणु की संघटित और असंघटित करने की क्षमता प्रकृति में हुए बहुत से भौतिक परिवर्तन के लिए जिम्मेदार है, और रसायन शास्त्र के अनुशासन का विषय है। .

नई!!: क्रिस्टलता और परमाणु · और देखें »

पारदर्शिता और पारभासकता

प्रकाशिकी (ओप्टिकस) के क्षेत्र में, पारदर्शिता (transparency) किसी पदार्थ का वह गुण होता है जिसमें वह प्रकाश की किरणों को अपने भीतर से बिना बिखेरे आने-जाने दे। पारभासकता (translucency) किसी चीज़ का वह गुण होता है जो प्रकाश को अपने से आर-पार गुज़रने तो दे लेकिन संभवतः उसमें ज़रा-बहुत रुकावट या बिखराव डालनें से क्षीण कर दे। .

नई!!: क्रिस्टलता और पारदर्शिता और पारभासकता · और देखें »

पॉलीमर

रिअल लीनिअर पॉलीमर कड़ियां, जो परमाणिव्क बल सूक्ष्मदर्शी द्वारा तरल माध्यम के अधीन देखी गयी हैं। इस बहुलक की चेन लंबाई ~२०४ नैनो.मीटर; मोटाई is ~०.४ नै.मी.वाई.रोइटर एवं एस.मिंको, http://dx.doi.org/10.1021/ja0558239 ईफ़एम सिंगल मॉलिक्यूल एक्स्पेरिमेंट्स ऐट सॉलिड-लिक्विड इंटरफ़ेस, अमरीकन कैमिकल सोसायटी का जर्नल, खण्ड १२७, ss. 45, pp. 15688-15689 (2005) वहुलक या पाॅलीमर बहुत अधिक अणु मात्रा वाला कार्बनिक यौगिक होता है। यह सरल अणुओं जिन्हें मोनोमर कहा जाता; के बहुत अधिक इकाईयों के पॉलीमेराइजेशन के फलस्वरूप बनता है।। नैनोविज्ञान। वर्ल्डप्रेस पर पॉलीमर में बहुत सारी एक ही तरह की आवर्ती संरचनात्मक इकाईयाँ यानि मोनोमर संयोजी बन्ध (कोवैलेन्ट बॉण्ड) से जुड़ी होती हैं। सेल्यूलोज, लकड़ी, रेशम, त्वचा, रबर आदि प्राकृतिक पॉलीमर हैं, ये खुली अवस्था में प्रकृति में पाए जाते हैं तथा इन्हें पौधों और जीवधारियों से प्राप्त किया जाता है। इसके रासायनिक नामों वाले अन्य उदाहरणों में पालीइथिलीन, टेफ्लान, पाॅली विनाइल क्लोराइड प्रमुख पाॅलीमर हैं। कृत्रिम या सिंथेटिक पॉलीमर मानव निर्मित होते हैं। इन्हें कारखानों में उत्पादित किया जा सकता है। प्लास्टिक, पाइपों, बोतलों, बाल्टियों आदि के निर्माण में प्रयुक्त होने वाली पोलीथिन सिंथेटिक पॉलीमर है। बिजली के तारों, केबलों के ऊपर चढ़ाई जाने वाली प्लास्टिक कवर भी सिंथेटिक पॉलीमर है। फाइबर, सीटकवर, मजबूत पाइप एवं बोतलों के निर्माण में प्रयुक्त होने वाली प्रोपाइलीन भी सिंथेटिक पॉलीमर है। वाल्व सील, फिल्टर क्लॉथ, गैस किट आदि टेफलॉन से बनाए जाते हैं। सिंथेटिक रबर भी पॉलीमर है जिससे मोटरगाड़ियों के टायर बनाए जाते हैं। हॉलैंड के वैज्ञानिकों के अनुसार मकड़ी में उपस्थित एक डोप नामक तरल पदार्थ उसके शरीर से बाहर निकलते ही एकप प्रोटीनयुक्त पॉलीमर के रूप में जाला बनाता है। पॉलीमर शब्द का प्रथम प्रयोग जोंस बर्जिलियस ने १८३३ में किया था। १९०७ में लियो बैकलैंड ने पहला सिंथेटिक पोलीमर, फिनोल और फॉर्मएल्डिहाइड की प्रक्रिया से बनाया। उन्होंने इसे बैकेलाइट नाम दिया। १९२२ में हर्मन स्टॉडिंगर को पॉलीमर के नए सिद्धांत को प्रतिपादित करने के लिए नोबल पुरस्कार से सम्मानित किया गया था। इससे पहले यह माना जाता था कि ये छोटे अणुओं का क्लस्टर है, जिन्हें कोलाइड्स कहते थे, जिसका आण्विक भार ज्ञात नहीं था। लेकिन इस सिद्धांत में कहा गया कि पाॅलीमर एक शृंखला में कोवेलेंट बंध द्वारा बंधे होते हैं। पॉलीमर शब्द पॉली (कई) और मेरोस (टुकड़ों) से मिलकर बना है। एक ही प्रकार की मोनोमर इकाईयों से बनने वाले बहुलक को होमोपॉलीमर कहते हैं। जैसे पॉलीस्टायरीन का एकमात्र मोनोमर स्टायरीन ही है। भिन्न प्रकार की मोनोमर इकाईयों से बनने वाले बहुलक को कोपॉलीमर कहते हैं। जैसे इथाइल-विनाइल-एसीटेट भिन्न प्रकार के मोनोमरों से बनता है। भौतिक व रासायनिक गुणों के आधार पर इन्हें दो वर्गों में बांटा जा सकता है: right.

नई!!: क्रिस्टलता और पॉलीमर · और देखें »

भार

भौतिकी में किसी वस्तु पर पृथ्वी के गुरुत्वाकर्षण के माप को भार या वज़न कहते हैं। पृथ्वी की सतह पर गुरुत्वाकर्षण के कारण त्वरण लगभग समान होता है, इसलिए किसी वस्तु का भार उसके द्रव्यमान के अनुपाती होता है। श्रेणी:मापन vi:Tương tác hấp dẫn#Trọng lực.

नई!!: क्रिस्टलता और भार · और देखें »

मिश्रातु

इस्पात एक मिश्रधातु है दो या अधिक धात्विक तत्वों के आंशिक या पूर्ण ठोस-विलयन को मिश्रातु या मिश्र धातु (Alloy) कहते हैं। इस्पात एक मिश्र धातु है। प्रायः मिश्र धातुओं के गुण उस मिश्रधातु को बनाने वाले संघटकों के गुणों से भिन्न होते हैं। इस्पात, लोहे की अपेक्षा अधिक मजबूत होता है। काँसा, पीतल, टाँका (सोल्डर) आदि मिश्रातु हैं। .

नई!!: क्रिस्टलता और मिश्रातु · और देखें »

मृत्तिकाशिल्प

चीनी पोर्सलीन का पात्र (किंग वंश, १८वीं शती) खपरैल मेक्सिको से प्राप्त योद्धा की मृतिकाशिल्प (तीसरी शती ईसापूर्व से चौथी शती ई के बीच) मृत्तिकाशिल्प 'सिरैमिक्स' (ceramics) का हिन्दी पर्याय है। ग्रीक भाषा के 'कैरेमिक' का अर्थ है - 'कुंभकार का शिल्प'। अमरीका में मृद भांड, दुर्गलनीय पदार्थ, कांच, सीमेंट, एनैमल तथा चूना उद्योग मृत्तिकाशिल्प के अंतर्गत हैं। गढ़ने तथा सुखाने के बाद अग्नि द्वारा प्रबलित मिट्टी या अन्य सुधट्य पदार्थ की निर्मिति को यूरोप में 'मृत्तिका शिल्प उत्पादन' कहते हैं। मृत्पदार्थो के निर्माण, उनके तकनीकी लक्षण तथा निर्माण में प्रयुक्त कच्चे माल से संबंधित उद्योग को हम मृत्तिकाशिल्प या सिरैमिक्स कहते हैं। मिट्टी के उत्पाद अनेक क्षेत्रों में, जैसे भवन निर्माण तथा सजावट, प्रयोगशाला, अस्पताल, विद्युत उत्पादन और वितरण, जलनिकास मलनिर्यास, पाकशाला, ऑटोमोबाइल तथा वायुयान आदि में काम आते हैं। .

नई!!: क्रिस्टलता और मृत्तिकाशिल्प · और देखें »

रमन स्पेक्ट्रमिकी

रमन संकेत में शामिल राज्यों को दिखाते हुए ऊर्जा स्तर का आरेखरेखा की मोटाई लगभग विभिन्न संक्रमण से सिग्नल की शक्ति के लिए आनुपातिक है। रमन वर्णक्रमीयता (स्पेक्ट्रोस्कोपी) (सी वी रमन के नाम पर आधारित) एक वर्णक्रमीय (स्पेक्ट्रोस्कोपी) तकनीक है जिसका प्रयोग एक प्रणाली में कंपन, घूर्णन तथा अन्य कम आवृत्ति के प्रकारों के अध्ययन में होता है। यह एक रंग के प्रकाश (मोनोक्रोमेटिक लाईट) के, आम तौर पर इन्फ्रारेड या पराबैंगनी रेंज के पास लेज़र से दिखाई देने वाले अलचकदार स्कैटरिंग (बिखराव) या रमन बिखराव (रमन स्कैटरिंग) पर आधारित है। प्रणाली में लेज़र प्रकाश फ़ोनोन (phonon) या उत्तेज़क कारकों से क्रिया करता है जिसके परिणामस्वरूप लेज़र फोटोन की ऊर्जा ऊपर या नीचे स्थानांतरित होती रहती है। ऊर्जा में बदलाव प्रणाली में फ़ोनोन (phonon) मोड के बारे में जानकारी देता है। इन्फ्रारेड वर्णक्रमीयता (स्पेक्ट्रोस्कोपी) समान तरह की, लेकिन अतिरिक्त सूचना प्रदान करती है। आमतौर पर, एक नमूने को एक लेज़र बीम से प्रकाशित किया जाता है। प्रकाशित बिंदु से रोशनी को एक लेंस के माध्यम से एकत्रित किया जाता है और मोनोक्रोमेटर (monochromator) के माध्यम से भेजा जाता है। रेले बिखराव (रेले स्कैटरिंग) के कारण, लेज़र लाइन के पार की तरंगे छान ली जाती हैं जबकि बची हुई रोशनी को एक डिटेक्टर पर छितराया जाता है। स्वाभाविक रमन बिखराव (रमन स्कैटरिंग) आम तौर पर बहुत कमजोर होता है और इसी कारण रमन वर्णक्रमीयता (स्पेक्ट्रोस्कोपी) में मुख्य कठिनाई प्रचंड रेले स्कैटर्ड लेज़र प्रकाश में से कमज़ोर अलचकदार स्कैटर्ड लेज़र प्रकाश को अलग करना है। ऐतिहासिक रूप से, एक उच्च दर की लेज़र रिजेक्शन को प्राप्त करने के लिए रमन स्पेक्ट्रोमीटर ने होलोग्राफिक (holographic) ग्रेटिंग तथा कई चरणों में फैलाव का प्रयोग किया। अतीत में, रमन फैलाव सेटअप के लिए डिटेक्टर के रूप में फोटोमल्टीप्लायर (photomultiplier) पहली पसंद थे, जो अत्यधिक समय लेते थे। लेकिन, आधुनिक उपकरण लगभग सार्वभौमिक रूप से लेज़र रिजेक्शन तथा स्पेक्ट्रोग्राफ और सीसीडी (CCD) डिटेक्टरों के लिए नॉच (notch) या एज फ़िल्टर (edge filter) (या तो एक्सियल ट्रांसमिसिव (axial transmissive (एटी (AT)), ज़ेर्नी-टर्नर (Czerny-Turner) (सीटी (CT)) मोनोक्रोमेटर या फिर एफटी (FT) (फोरियर ट्रांसफोर्म स्पेक्ट्रोस्कोपी आधारित)), का प्रयोग करते हैं। रमन वर्णक्रमीयता (स्पेक्ट्रोस्कोपी) के कई उन्नत प्रकार हैं, जिसमे सरफेस एन्हैंस्ड रमन (surface-enhanced Raman), टिप एन्हैंस्ड रमन (tip-enhanced Raman), पोलराइज्ड रमन (polarised Raman), स्टिमुलेटेड रमन (stimulated Raman) (स्टिमुलेटेड उत्सर्जन की तरह), ट्रांसमिशन रमन (transmission Raman), स्पैटियली-ऑफ़सेट रमन (spatially-offset Raman) और हायपर रमन (hyper Raman) शामिल हैं। .

नई!!: क्रिस्टलता और रमन स्पेक्ट्रमिकी · और देखें »

सिलिकॉन

सिलिकॉन (Silicon); प्रतीक: Si) एक रासायनिक तत्व है। यह पृथ्वी पर ऑक्सीजन के बाद सबसे अधिक पाया जाने वाला तत्व है। सिलिकॉन के यौगिक एलेक्ट्रॉनिक अवयव, साबुन, शीशे एवं कंप्यूटर चिप्स में इस्तेमाल किए जाते हैं। सिलिकॉन की खोज १८२४ में स्वीडन के रसायनशास्त्री जोंस जकब बज्रेलियस ने की थी। आवर्त सारिणी में इसे १४वें स्थान पर रखा गया है। .

नई!!: क्रिस्टलता और सिलिकॉन · और देखें »

घनत्व

भौतिकी में किसी पदार्थ के इकाई आयतन में निहित द्रव्यमान को उस पदार्थ का घनत्व (डेंसिटी) कहते हैं। इसे ρ या d से निरूपित करते हैं। अर्थात अतः घनत्व किसी पदार्थ के घनेपन की माप है। यह इंगित करता है कि कोई पदार्थ कितनी अच्छी तरह सजाया हुआ है। इसकी इकाई किग्रा प्रति घन मीटर होती है। .

नई!!: क्रिस्टलता और घनत्व · और देखें »

विसरण

तीन अलग-अलग समयों पर किसी गैस का विसरण: (१) विसरण के ठीक पहले (२) विसरण के थोडी देर बाद (३) विसरण आरम्भ होने के बहुत देर बाद विसरण के पहले और बाद में दो या दो से अधिक पादार्थों का स्वतः एक दूसरे से मिलकर समांग मिश्रण बनाने की क्रिया को विसरण (डिफ्यूजन) कहते हैं। सजीव कोशिकाओं में अमीनो अम्ल के संवहन में विसरण की मुख्य भूमिका है। .

नई!!: क्रिस्टलता और विसरण · और देखें »

गैस

गैसों का कण मॉडल: गैसों के कणों के बीच की औसत दूरी अपेक्षाकृत अधिक होती है। गैस (Gas) पदार्थ की तीन अवस्थाओं में से एक अवस्था का नाम है (अन्य दो अवस्थाएँ हैं - ठोस तथा द्रव)। गैस अवस्था में पदार्थ का न तो निश्चित आकार होता है न नियत आयतन। ये जिस बर्तन में रखे जाते हैं उसी का आकार और पूरा आयतन ग्रहण कर लेते हैं। जीवधारियों के लिये दो गैसे मुख्य हैं, आक्सीजन गैस जिसके द्वारा जीवधारी जीवित रहता है, दूसरी जिसे जीवधारी अपने शरीर से छोड़ते हैं, उसका नाम कार्बन डाई आक्साइड है। इनके अलावा अन्य गैसों का भी बहु-प्रयोग होता है, जैसे खाना पकाने वाली रसोई गैस। पानी दो गैसों से मिलकर बनता है, आक्सीजन और हाइड्रोजन। .

नई!!: क्रिस्टलता और गैस · और देखें »

आयतन

सभी पदार्थ स्थान (त्रि-बीमीय स्थान) घेरते हैं। इसी त्रि-बीमीय स्थान की मात्रा की माप को आयतन कहते हैं। एक-बीमीय आकृतियाँ (जैसे रेखा) एवं द्वि-बीमीय आकृतियाँ (जैसे त्रिभुज, चतुर्भुज, वर्ग आदि) का आयतन शून्य होता है। .

नई!!: क्रिस्टलता और आयतन · और देखें »

इलैक्ट्रॉनिक्स

तल पर जुड़ने वाले (सरफेस माउंट) एलेक्ट्रानिक अवयव विज्ञान के अन्तर्गत इलेक्ट्रॉनिक्स या इलेक्ट्रॉनिकी विज्ञान और प्रौद्योगिकी का वह क्षेत्र है जो विभिन्न प्रकार के माध्यमों (निर्वात, गैस, धातु, अर्धचालक, नैनो-संरचना आदि) से होकर आवेश (मुख्यतः इलेक्ट्रॉन) के प्रवाह एवं उन पर आधारित युक्तिओं का अध्ययन करता है। प्रौद्योगिकी के रूप में इलेक्ट्रॉनिकी वह क्षेत्र है जो विभिन्न इलेक्ट्रॉनिक युक्तियों (प्रतिरोध, संधारित्र, इन्डक्टर, इलेक्ट्रॉन ट्यूब, डायोड, ट्रान्जिस्टर, एकीकृत परिपथ (IC) आदि) का प्रयोग करके उपयुक्त विद्युत परिपथ का निर्माण करने एवं उनके द्वारा विद्युत संकेतों को वांछित तरीके से बदलने (manipulation) से संबंधित है। इसमें तरह-तरह की युक्तियों का अध्ययन, उनमें सुधार तथा नयी युक्तियों का निर्माण आदि भी शामिल है। ऐतिहासिक रूप से इलेक्ट्रॉनिकी एवं वैद्युत प्रौद्योगिकी का क्षेत्र समान रहा है और दोनो को एक दूसरे से अलग नही माना जाता था। किन्तु अब नयी-नयी युक्तियों, परिपथों एवं उनके द्वारा सम्पादित कार्यों में अत्यधिक विस्तार हो जाने से एलेक्ट्रानिक्स को वैद्युत प्रौद्योगिकी से अलग शाखा के रूप में पढाया जाने लगा है। इस दृष्टि से अधिक विद्युत-शक्ति से सम्बन्धित क्षेत्रों (पावर सिस्टम, विद्युत मशीनरी, पावर इलेक्ट्रॉनिकी आदि) को विद्युत प्रौद्योगिकी के अन्तर्गत माना जाता है जबकि कम विद्युत शक्ति एवं विद्युत संकेतों के भांति-भातिं के परिवर्तनों (प्रवर्धन, फिल्टरिंग, मॉड्युलेश, एनालाग से डिजिटल कन्वर्शन आदि) से सम्बन्धित क्षेत्र को इलेक्ट्रॉनिकी कहा जाता है। .

नई!!: क्रिस्टलता और इलैक्ट्रॉनिक्स · और देखें »

कठोरता

विकर्स का कठोरतामापी एलास्टोमर पदार्थों के बल-विकृति ग्राफ में हिस्टेरिसिस पायी जाती है (प्रतिबल बढ़ाने पर और घटाने पर ग्राफ अलग-अलग मार्ग से जाता है)। इसे एलास्टिक हिस्टेरिस कहते हैं। प्रतिक्षेप कठोरता (रिबाउण्ड हार्डनेस) का मापन इसी सिद्धान्त पर आधारित है। प्रत्यास्थ पदार्थों में यह हिस्टेरिसिस् नहीं पायी जाती। कठोरता (Hardness) किसी ठोस का वह गुण है जिससे पता चलता है कि उस पर बल लगाने पर उसे स्थायी रूप से विकृत करने की कितनी सम्भावना है। सामान्यतः अधिक कठोर ठोस वह होता है जिसमें अन्तराणविक बल अधिक मजबूत होगा। कठोर पदार्थों के कुछ उदाहरण: सिरामिक (ceramics), कंक्रीट (concrete), कुछ धातुएँ तथा अतिकठोर पदार्थ। 'कठोरता' को मापने के अलग-अलग तरीके हैं.

नई!!: क्रिस्टलता और कठोरता · और देखें »

कांच

स्वच्छ पारदर्शी कांच का बना प्रकाश बल्ब काच, काँच या कांच (glass) एक अक्रिस्टलीय ठोस पदार्थ है। कांच आमतौर भंगुर और अक्सर प्रकाशीय रूप से पारदर्शी होते हैं। काच अथव शीशा अकार्बनिक पदार्थों से बना हुआ वह पारदर्शक अथवा अपारदर्शक पदार्थ है जिससे शीशी बोतल आदि बनती हैं। काच का आविष्कार संसार के लिए बहुत बड़ी घटना थी और आज की वैज्ञानिक उन्नति में काच का बहुत अधिक महत्व है। किन्तु विज्ञान की दृष्टि से 'कांच' की परिभाषा बहुत व्यापक है। इस दृष्टि से उन सभी ठोसों को कांच कहते हैं जो द्रव अवस्था से ठण्डा होकर ठोस अवस्था में आने पर क्रिस्टलीय संरचना नहीं प्राप्त करते। सबसे आम काच सोडा-लाइम काच है जो शताब्दियों से खिड़कियाँ और गिलास आदि बनाने के काम में आ रहा है। सोडा-लाइम कांच में लगभग 75% सिलिका (SiO2), सोडियम आक्साइड (Na2O) और चूना (CaO) और अनेकों अन्य चीजें कम मात्रा में मिली होती हैं। काँच यानी SiO2 जो कि रेत का अभिन्न अंग है। रेत और कुछ अन्य सामग्री को एक भट्टी में लगभग 1500 डिग्री सैल्सियस पर पिघलाया जाता है और फिर इस पिघले काँच को उन खाँचों में बूंद-बूंद करके उंडेला जाता है जिससे मनचाही चीज़ बनाई जा सके। मान लीजिए, बोतल बनाई जा रही है तो खाँचे में पिघला काँच डालने के बाद बोतल की सतह पर और काम किया जाता है और उसे फिर एक भट्टी से गुज़ारा जाता है। .

नई!!: क्रिस्टलता और कांच · और देखें »

क्रिस्टल

क्रिस्टलीय, बहुक्रिस्टलीय तथा अक्रिस्टलीय पदार्थों की सूक्ष्म संरचना स्फटिक, इस बहुमणिभीय खनिज की पर्तें स्पष्ट पारदर्शी होतीं हैं बिस्मथ का क्रिस्टल इन्सुलिन का क्रिस्टल गैलियम, जिसकी वृहत एकपर्त होती हैं रसायन शास्त्र, खनिज शास्त्र एवं पदार्थ विज्ञान में क्रिस्टल उन ठोसों को कहते हैं जिनके अणु, परमाणु या आयन, एक व्यवस्थित क्रम में लगे होते हैं तथा यही क्रम सभी तरफ दोहराया जाता है। प्रतिदिन के प्रयोग के अधिकतर पदार्थ बहुक्रिस्टलीय (पॉलीक्रिटलाइन) होते हैं। क्रिस्टलों तथा क्रिस्टल निर्माण के वैज्ञानिक अध्ययन को क्रिस्टलकी (crystallography) कहते हैं। क्रिस्टल बनने की प्रक्रिया को क्रिस्टलन या क्रिस्टलीकरण (crystallization या solidification) कहते हैं। .

नई!!: क्रिस्टलता और क्रिस्टल · और देखें »

कैलोरीमिति

'''विश्व का सबसे पहला हिम-कैलोरीमापी''': इसे सन् 1782-83 में लैवाशिए और लाप्लास ने विभिन्न रासायनिक परिवर्तनों में उत्पन्न ऊष्मा की मात्रा के निर्धारण के लिये प्रयोग किया था। किसी रीति से उष्मा के मापन को उष्मामिति या 'कैलोरीमिति' (calorimetry) कहते हैं। किसी रासायनिक अभिक्रिया में या अवस्था परिवर्तन में या किसी भौतिक या रासायनिक परिवर्तन में या किसी जैविक प्रक्रम (बायोलॉजिकल प्रॉसेस) जो ऊष्मा उत्पन्न होती है अवशोषित होती है उसकी मात्रा की माप करके पदार्थों अथवा प्रक्रमों की की विशिष्ट ऊष्मा, ऊष्मा धारिता, गुप्त ऊष्मा आदि का निर्धारण किया जा सकता है। ऊष्मामिति का आरम्भ जूल (Joule) के उस प्रयोग से आरम्भ हुआ जो 'कैलोरी के यांत्रिक तुल्यांक' के निर्धारण के लिये किया गया था। वास्तव में यह प्रयोग ऊर्जा के संरक्षण के सिद्धान्त पर आधारित था। कैलोरीमिति के लिये जो उपकरण उपयोग में लाये जाते हैं उन्हें 'कैलोरीमापी' (calorimeters) कहते हैं! कैलोरीमिति सिद्धांत(principle of calorimetry): जब दो भिन्न भिन्न तापों वाली वस्तुओं को परस्पर रखा जाता है, तो ऊष्मा का प्रवाह उच्च ताप वाली वस्तु से निम्न ताप वाली वस्तु में होता है! .

नई!!: क्रिस्टलता और कैलोरीमिति · और देखें »

अणु

साधारण चीनी का अणु - इसमें १२ कार्बन (काला रंग), २२ हाइड्रोजन (सफ़ेद रंग) और ११ आक्सीजन (लाल रंग) के परमाणु एक दुसरे से जुड़े हुए होते हैं अणु पदार्थ का वह छोटा कण है जो प्रकृति के स्वतंत्र अवस्था में पाया जाता है लेकिन रासायनिक प्रतिक्रिया में भाग नहीं ले सकता है। रसायन विज्ञान में अणु दो या दो से अधिक, एक ही प्रकार या अलग अलग प्रकार के परमाणुओं से मिलकर बना होता है। परमाणु मजबूत रसायनिक बंधन के कारण आपस में जुड़े रहते हैं और अणु का निर्माण करते हैं। अणु की संकल्पना ठोस, द्रव और गैस के लिये अलग अलग हो सकती है। अणु पदार्थ के सबसे छोटे भाग को कहते हैं। यह कथन गैसो के लिये ज्यादा उपयुक्त है। उदाहरण के लिये, ओक्सीजन गैस उसके स्वतन्त्र अणुओ का एक समूह है। द्रव और ठोस में अणु एक दूसरे से किसी ना किसी बन्धन में रह्ते है, इनका स्वतन्त्र अस्तित्व नहीं होता है। कई अणु एक दूसरे से जुडे होते है और एक अणु को अलग नहीं किया जा सकता है। अणु में कोई विद्युत आवेश नहीं होता है। अणु एक ही तत्व के परमाणु से मिलकर बने हो सकते हैं या अलग अलग तत्वों के परमाणु से मिलकर। .

नई!!: क्रिस्टलता और अणु · और देखें »

अनियत ठोस

कांच सदृश सिलिका (SiO2) के परमाणुओं का द्विबिम विन्यास अकेलास ठोस (एमोर्फस सॉलिड / Amorphous solid) उन ठोस पदार्थों को कहते हैं जिनके अन्दर पर्याप्त दूरी तक परमाणुओं का कोई सुनिश्चित विन्यास नहीं होता। अकेलास ठोस गरम करने पर क्रमश नरम हो जाते हैं और फिर धीरे-धीरे उनकी श्यानता (विस्कोसिटी) इतनी कम हो जाती है कि वे चल्य (मोबाइल) बनकर द्रव में परिवर्तित हो जाते हैं। इन पदार्थों का कोई निश्चित गलनांक नहीं होता। ये पदार्थ ठीक-ठीक ठोस की परिभाषा के अंतर्गत नहीं आते। इसलिए इनको अत्यधिक श्यानता वाले अतिशीतलित (सुपरकूल्ड) द्रव भी कहा जाता है। काँच, मोम, वसा, अलकतरा (डामर) आदि अकेलास ठोस में से हैं। अधिकांश ठोस एमार्फस रूप में पाये जाते हैं या उन्हें एमॉर्फस रूप में बनाया जा सकता है। .

नई!!: क्रिस्टलता और अनियत ठोस · और देखें »

अर्धचालक पदार्थ

सुचालक, अर्धचालक तथा कुचालक के बैण्डों की तुलना अर्धचालक (semiconductor) उन पदार्थों को कहते हैं जिनकी विद्युत चालकता चालकों (जैसे ताँबा) से कम किन्तु अचालकों (जैसे काच) से अधिक होती है। (आपेक्षिक प्रतिरोध प्रायः 10-5 से 108 ओम-मीटर के बीच) सिलिकॉन, जर्मेनियम, कैडमियम सल्फाइड, गैलियम आर्सेनाइड इत्यादि अर्धचालक पदार्थों के कुछ उदाहरण हैं। अर्धचालकों में चालन बैण्ड और संयोजक बैण्ड के बीच एक 'बैण्ड गैप' होता है जिसका मान ० से ६ एलेक्ट्रान-वोल्ट के बीच होता है। (Ge 0.7 eV, Si 1.1 eV, GaAs 1.4 eV, GaN 3.4 eV, AlN 6.2 eV).

नई!!: क्रिस्टलता और अर्धचालक पदार्थ · और देखें »

निवर्तमानआने वाली
अरे! अब हम फेसबुक पर हैं! »