लोगो
यूनियनपीडिया
संचार
Google Play पर पाएं
नई! अपने एंड्रॉयड डिवाइस पर डाउनलोड यूनियनपीडिया!
इंस्टॉल करें
ब्राउज़र की तुलना में तेजी से पहुँच!
 

अनन्त समान्तर श्रेणी

सूची अनन्त समान्तर श्रेणी

गणित में अनन्त समान्तर श्रेणी एक अनन्त श्रेणी है जिसके पद समान्तार श्रेढ़ी में होते हैं। उदाहरण के लिए और, जहाँ सार्व अन्तर क्रमशः शून्य (0) और एक (1) हैं। एक अनन्त श्रेणी के लिए व्यापक पद निम्न प्रकार लिखा जा सकता है यदि a .

6 संबंधों: शून्य, समान्तर श्रेढ़ी, अपसारी श्रेणी, १ + १ + १ + १ + · · ·, १ + २ + ३ + ४ + · · ·, १ − २ + ३ − ४ + · · ·

शून्य

शून्य (0) एक अंक है जो संख्याओं के निरूपण के लिये प्रयुक्त आजकी सभी स्थानीय मान पद्धतियों का अपरिहार्य प्रतीक है। इसके अलावा यह एक संख्या भी है। दोनों रूपों में गणित में इसकी अत्यन्त महत्वपूर्ण भूमिका है। पूर्णांकों तथा वास्तविक संख्याओं के लिये यह योग का तत्समक अवयव (additive identity) है। .

नई!!: अनन्त समान्तर श्रेणी और शून्य · और देखें »

समान्तर श्रेढ़ी

गणित में समान्तर श्रेणी (Arithmetic progression) अथवा समान्तर अनुक्रम संख्याओं का एक ऐसा अनुक्रम है जिसके दो क्रमागत पदो का अन्तर नियत होता है। जैसे अनुक्रम 4, 7, 10, 13, 16...

नई!!: अनन्त समान्तर श्रेणी और समान्तर श्रेढ़ी · और देखें »

अपसारी श्रेणी

गणित में अपसारी श्रेणी एक अनन्त श्रेणी है जो अभिसारी नहीं है, मतलब यह कि श्रेणी के आंशिक योग का अनन्त अनुक्रम का सीमान्त मान नहीं होता। यदि एक श्रेणी अभिसरण करती है तो इसका व्याष्‍टिकारी पद (nवाँ पद जहाँ n अनन्त की ओर अग्रसर है।) शून्य की ओर अग्रसर होना चहिए। अतः कोई भी श्रेणी जिसका व्याष्‍टिकारी पद शून्य की ओर अग्रसर नहीं होता तो वह अपसारी होती है। तथापि अभिसरण की शर्त थोडी प्रबल है: जिस श्रेणियों का व्याष्‍टिकारी पद शून्य की ओर अग्रसर हो वह आवश्यक रूप से अभिसारी नहीं होती। इसका एक गणनीय उदाहरण निम्न हरात्मक श्रेणी है: हरात्मक श्रेणी का अपसरण मध्यकालीन गणितज्ञ निकोल ऑरेसम द्वारा सिद्ध किया जा चुका है। .

नई!!: अनन्त समान्तर श्रेणी और अपसारी श्रेणी · और देखें »

१ + १ + १ + १ + · · ·

गणित में, 1 + 1 + 1 + 1 + · · ·, जिसे निम्न प्रकार भी लिखा जाता है \sum_^ n^0, \sum_^ 1^n, अथवा साधारणतया \sum_^ 1, एक अपसारी श्रेणी है इसका अर्थ यह है कि इस अनुक्रम के आंशिक योग वास्तविक संख्याओं में सीमा पर अभिसरण नहीं करते। अनुक्रम 1n को सार्वानुपात 1 के साथ गुणोत्तर श्रेणी भी माना जा सकता है। विस्तारित वास्तविक संख्या रेखा के प्रसंग में चूँकि इसके आंशिक योग का अनुक्रम सीमा रहित एकदिष्‍टतः वर्धमान है। जहाँ n0 का योग एक भौतिकीय अनुप्रयोग के रूप में प्राप्त होता है, यह कभी-कभी ज़ेटा फलन नियमितीकरण के रूप में भी प्राप्त होता है। यह रीमान ज़ेटा फलन का 1.

नई!!: अनन्त समान्तर श्रेणी और १ + १ + १ + १ + · · · · और देखें »

१ + २ + ३ + ४ + · · ·

सभी प्राकृत संख्याओं का योग 1 + 2 + 3 + 4 + · · · एक अपसारी श्रेणी है। श्रेणी का nवाँ आंशिक योग त्रिकोण संख्या है जो जैसे ही n का मान अनन्त की ओर अग्रसर होता है वैसे बिना किसी सीमा के बढता है। यद्यपि पूर्ण श्रेणी को प्रथम दृष्टया देखने पर यह इस प्रकार लगता है जैसे यह अर्थहीन है, इसको गणितीय रूप से रोचक परिणाम वाली संख्या के रूप में प्रकलकलित किया जा सकता है, जिसके अनुप्रयोग अन्य क्षेत्रों जैसे सम्मिश्र विश्लेषण, क्वांटम क्षेत्र सिद्धांत और स्ट्रिंग सिद्धांत में होता है। .

नई!!: अनन्त समान्तर श्रेणी और १ + २ + ३ + ४ + · · · · और देखें »

१ − २ + ३ − ४ + · · ·

गणित में, 1 − 2 + 3 − 4 + ··· एक अनन्त श्रेणी है जिसके व्यंजक क्रमानुगत धनात्मक संख्याएं होती हैं जिसके एकांतर चिह्न होते हैं अर्थात प्रत्येक व्यंजक के चिह्न, इसके पूर्व व्यंजक से विपरीत होते हैं। श्रेणी के प्रथम m पदों का योग सिग्मा योग निरूपण की सहायता से निम्नवत् लिखा जा सकता है: अनन्त श्रेणी के अपसरण का मतलब यह है कि इसके आंशिक योग का अनुक्रम किसी परिमित मान की ओर अग्रसर नहीं होता है। बहरहाल, 18वीं शताब्दी के मध्य में लियोनार्ड आयलर ने विरोधाभासी समीकरण में लिखा: लेकिन इस समीकरण की सार्थकता बहुत समय बाद तक स्पष्ट नहीं हो पाई। 1980 के पूर्वार्द्ध में अर्नेस्टो सिसैरा, एमिल बोरेल तथा अन्य ने अपसारी श्रेणियों को व्यापक योग निर्दिष्ट करने के लिए सुपरिभाषित विधि प्रदान की— जिसमें नवीन आयलर विधियों का भी उल्लेख था। इनमें से विभिन्न संकलनीयता विधियों द्वारा का "योग" लिखा जा सकता है। सिसैरा-संकलन उन विधियों में से एक है जो का योग प्राप्त नहीं कर सकती, अतः श्रेणी एक ऐसा उदाहरण है जिसमें थोड़ी प्रबल विधि यथा एबल संकलन विधि की आवश्यकता होती है। श्रेणी, ग्रांडी श्रेणी से अतिसम्बद्ध है। आयलर ने इन दोनों श्रेणियों को श्रेणी जहाँ (n यदृच्छ है), की विशेष अवस्था के रूप में अध्ययन किया और अपने शोध कार्य को बेसल समस्या तक विस्तारित किया। बाद में उनका ये कार्य फलनिक समीकरण के रूप में परिणत हुआ जिसे अब डीरिख्ले ईटा फलन और रीमान जीटा फलन के नाम से जाना जाता है। .

नई!!: अनन्त समान्तर श्रेणी और १ − २ + ३ − ४ + · · · · और देखें »

निवर्तमानआने वाली
अरे! अब हम फेसबुक पर हैं! »