लोगो
यूनियनपीडिया
संचार
Google Play पर पाएं
नई! अपने एंड्रॉयड डिवाइस पर डाउनलोड यूनियनपीडिया!
मुक्त
ब्राउज़र की तुलना में तेजी से पहुँच!
 

इलेक्ट्रॉन

सूची इलेक्ट्रॉन

इलेक्ट्रॉन या विद्युदणु (प्राचीन यूनानी भाषा: ἤλεκτρον, लैटिन, अंग्रेज़ी, फ्रेंच, स्पेनिश: Electron, जर्मन: Elektron) ऋणात्मक वैद्युत आवेश युक्त मूलभूत उपपरमाणविक कण है। यह परमाणु में नाभिक के चारो ओर चक्कर लगाता हैं। इसका द्रव्यमान सबसे छोटे परमाणु (हाइड्रोजन) से भी हजारगुना कम होता है। परम्परागत रूप से इसके आवेश को ऋणात्मक माना जाता है और इसका मान -१ परमाणु इकाई (e) निर्धारित किया गया है। इस पर 1.6E-19 कूलाम्ब परिमाण का ऋण आवेश होता है। इसका द्रव्यमान 9.11E−31 किग्रा होता है जो प्रोटॉन के द्रव्यमान का लगभग १८३७ वां भाग है। किसी उदासीन परमाणु में विद्युदणुओं की संख्या और प्रोटानों की संख्या समान होती है। इनकी आंतरिक संरचना ज्ञात नहीं है इसलिए इसे प्राय:मूलभूत कण माना जाता है। इनकी आंतरिक प्रचक्रण १/२ होती है, अतः यह फर्मीय होते हैं। इलेक्ट्रॉन का प्रतिकणपोजीट्रॉन कहलाता है। द्रव्यमान के अलावा पोजीट्रॉन के सारे गुण यथा आवेश इत्यादि इलेक्ट्रॉन के बिलकुल विपरीत होते हैं। जब इलेक्ट्रॉन और पोजीट्रॉन की टक्कर होती है तो दोंनो पूर्णतः नष्ट हो जाते हैं एवं दो फोटॉन उत्पन्न होती है। इलेक्ट्रॉन, लेप्टॉन परिवार के प्रथम पीढी का सदस्य है, जो कि गुरुत्वाकर्षण, विद्युत चुम्बकत्व एवं दुर्बल प्रभाव सभी में भूमिका निभाता है। इलेक्ट्रॉन कण एवं तरंग दोनो तरह के व्यवहार प्रदर्शित करता है। बीटा-क्षय के रूप में यह कण जैसा व्यवहार करता है, जबकि यंग का डबल स्लिट प्रयोग (Young's double slit experiment) में इसका किरण जैसा व्यवहार सिद्ध हुआ। चूंकि इसका सांख्यिकीय व्यवहार फर्मिऑन होता है और यह पॉली एक्सक्ल्युसन सिध्दांत का पालन करता है। आइरिस भौतिकविद जॉर्ज जॉनस्टोन स्टोनी (George Johnstone Stoney) ने १८९४ में एलेक्ट्रों नाम का सुझाव दिया था। विद्युदणु की कण के रूप में पहचान १८९७ में जे जे थॉमसन (J J Thomson) और उनकी विलायती भौतिकविद दल ने की थी। कइ भौतिकीय घटनाएं जैसे-विध्युत, चुम्बकत्व, उष्मा चालकता में विद्युदणु की अहम भूमिका होती है। जब विद्युदणु त्वरित होता है तो यह फोटान के रूप मेंऊर्जा का अवशोषण या उत्सर्जन करता है।प्रोटॉन व न्यूट्रॉन के साथ मिलकर यह्परमाणु का निर्माण करता है।परमाणु के कुल द्रव्यमान में विद्युदणु का हिस्सा कम से कम् 0.0६ प्रतिशत होता है। विद्युदणु और प्रोटॉन के बीच लगने वाले कुलाम्ब बल (coulomb force) के कारण विद्युदणु परमाणु से बंधा होता है। दो या दो से अधिक परमाणुओं के विद्युदणुओं के आपसी आदान-प्रदान या साझेदारी के कारण रासायनिक बंध बनते हैं। ब्रह्माण्ड में अधिकतर विद्युदणुओं का निर्माण बिग-बैंग के दौरान हुआ है, इनका निर्माण रेडियोधर्मी समस्थानिक (radioactive isotope) से बीटा-क्षय और अंतरिक्षीय किरणो (cosmic ray) के वायुमंडल में प्रवेश के दौरान उच्च ऊर्जा टक्कर के कारण भी होता है।.

117 संबंधों: ऊष्मा चालन, चुम्बकीय विसरणशीलता, चुंबकत्व, टाऊ (कण), टेट्रोड, एनोड किरणें, एलेक्ट्रॉन नलिका, एलेक्ट्रॉन पुंज वेल्डन, एंटीमैटर, ऐमीन, तरंग-कण द्वैतता, तारकीय आंधी, दुर्बल अन्योन्य क्रिया, द्रव्यमान वर्णक्रममाप, दो-वस्तु समस्या, धनाग्र, धातु, धातु हाइड्रोजन, नाइट्राइड, निहारिका, परमाणु, परमाणु नाभिक, परमाणु भौतिकी, परमाणु कक्षक, परमाणु क्रमांक, पल्म पुडिंग मॉडल, पश्चिमी संस्कृति, पाउली अपवर्जन नियम, पुनर्भरणीय विद्युत्कोष, प्रचलित गलत धारणाओं की सूची, प्रति-कण, प्रतिऑक्सीकारक, प्रदर्शक, प्रयोग, प्रकाश उत्सर्जक डायोड, प्रकाश-संश्लेषण, प्रकाश-विद्युत प्रभाव, प्रोटॉन, प्लाज़्मा (भौतिकी), पॉजि़ट्रान उत्सर्जन टोमोग्राफी, फर्मी अन्योन्यक्रिया, फ़ोस्फ़र, फैराडे का विद्युत अपघटन का नियम, ब्रह्माण्ड किरण, बैण्ड विस्तारण, बेरिऑन संख्या, बोर त्रिज्या, बीटा कण, बीटाट्रॉन, भौतिक विज्ञान की पारिभाषिक शब्दावली, ..., भौतिक विज्ञानी, भौतिकी के मूलभूत सिद्धान्तों के खोज का इतिहास, म्यूऑन, यंग्स डबल स्लिट परीक्षण, रेडियोसक्रियता, रेडॉक्स, लुई द ब्रॉई, लेप्टॉन संख्या, सफ़ेद बौना, समस्थानिक, सिन्क्रोट्रॉन प्रकाश स्रोत, संक्रमण धातु, स्ट्रिंग सिद्धांत, सौर पवन, सौर सेल, सूक्ष्मदर्शन, सेरेन्कोव विकिरण, सेंटीमीटर-ग्राम-सैकिण्ड इकाई प्रणाली, सीसा, हाइड्राइड, हाइड्रोजन, हाइड्रोजन परमाणु, हीरा, जेनर डायोड, जे॰ जे॰ थॉमसन, विद्युत, विद्युत चालन, विद्युत धारा, विकृत पदार्थ, वॉयेजर द्वितीय, खण्ड (आवर्त सारणी), खाद्य परिरक्षण, ग्राही, ऑक्सीकरण संख्या, आयन, आयनन ऊर्जा, इण्डोनेशियाई विकिपीडिया, इन्डस-२, इलैक्ट्रॉन आवरण, इलैक्ट्रॉनिक्स, इलेक्ट्रॉन न्यूट्रिनो, इलेक्ट्रॉन विन्यास, इलेक्ट्रॉन वोल्ट, इलेक्ट्रॉन गन, इलेक्ट्रॉन किरण अश्मलेखन, कण भौतिकी, कण सांख्यिकी, कणाभ, कणों की सूची, कार्बन-१२, कार्य फलन, कार्ल डेविड ऐंडरसन, क्षेत्र उत्सर्जन, क्वाण्टम संख्या, क्वार्क, कैथोड किरण नलिका, कैथोड किरणें, केन्द्रक (परमाणु), कोशिकीय श्वसन, अपचायक, अर्धचालक युक्ति, अर्नेस्ट रदरफोर्ड, अवपरमाणुक कण, अवलोकन टनलिंग सूक्ष्मदर्शी यंत्र, अंतरिक्ष विज्ञान, उत्सर्जन वर्णक्रम, उदासीन जोड़ी प्रभाव सूचकांक विस्तार (67 अधिक) »

ऊष्मा चालन

किसी पिण्ड के अन्दर सूक्ष्म विसरण तथा कणों के टक्कर के द्वारा जो ऊष्मा का अन्तरण होता है उसे ऊष्मा चालन (Thermal conduction) कहते हैं। यहाँ 'कण' से आशय अणु, परमाणु, इलेक्ट्रान और फोटॉन से है। चालन द्वारा ऊष्मा अन्तरण ठोस, द्रव, गैस और प्लाज्मा - सभी प्रावस्थाओं में होती है। .

नई!!: इलेक्ट्रॉन और ऊष्मा चालन · और देखें »

चुम्बकीय विसरणशीलता

चुम्बकीय विसरणशीलता (Magnetic diffusivity) प्लाज्मा भौतिकी का एक प्राचल (पैरामीटर) है। यह चुम्बकीय रेनल्ड्स संख्या में आता है। चुम्बकीय विसरणशीलता निम्न सूत्र से परिभाषित की जाती है.

नई!!: इलेक्ट्रॉन और चुम्बकीय विसरणशीलता · और देखें »

चुंबकत्व

चुंबकत्व प्रायोगिक चुंबकीय क्षेत्र के परमाणु या उप-परमाणु स्तर पर प्रतिक्रिया करने वाले तत्वों का गुण है। उदाहरण के लिए, चुंबकत्व का ज्ञात रूप है जो की लौह चुंबकत्व है, जहां कुछ लौह-चुंबकीय तत्व स्वयं अपना निरंतर चुंबकीय क्षेत्र उत्पन्न करते रहते हैं। हालांकि, सभी तत्व चुंबकीय क्षेत्र की उपस्थिति से कम या अधिक स्तर तक प्रभावित होते हैं। कुछ चुंबकीय क्षेत्र (अणुचंबकत्व) के प्रति आकर्षित होते हैं; अन्य चुंबकीय क्षेत्र (प्रति-चुंबकत्व) से विकर्षित होते हैं; जब कि दूसरों का प्रायोगिक चुंबकीय क्षेत्र के साथ और अधिक जटिल संबंध होता है। पदार्थ है कि चुंबकीय क्षेत्रों द्वारा नगण्य रूप से प्रभावित पदार्थ ग़ैर-चुंबकीय पदार्थ के रूप में जाने जाते हैं। इनमें शामिल हैं तांबा, एल्यूमिनियम, गैस और प्लास्टिक.

नई!!: इलेक्ट्रॉन और चुंबकत्व · और देखें »

टाऊ (कण)

टाऊ एक मूलभूत कण है। इसका प्रतीक चिह्न τ है। इसका आवेश इकाई (e) होता है अर्थात इलेक्ट्रॉन के समान होता है। विद्युतणु की भाँति यह कण भी लेप्टॉनों की श्रेणी में आता है। इसका द्रव्यमान 1.777 Gev/c2 है। इसका प्रचक्रण 1/2 होता है। आवेश के कारण यह दो फ्लेवर के साथ पाया जाता है जो एक दूसरे के प्रतिकण होते हैं अर्थात म्यूऑन एवं प्रतिटाऊ। टाऊ लेप्टॉन श्रेणी में आता है अतः यह दुर्बल अन्योन्य क्रिया में भाग लेता है। चूँकि यह एक आवेशित कण है अतः विद्युत चुम्बकीय अन्योन्य क्रियाओं में भी भाग लेता है। .

नई!!: इलेक्ट्रॉन और टाऊ (कण) · और देखें »

टेट्रोड

टेट्रोड का एलेक्ट्रॉनिक प्रतीक टेट्रोड (tetrode) या चतुराग्र एक निर्वात नली है जिसमें चार सक्रिय एलेक्ट्रोड होते हैं। प्रायः दो कंट्रोल ग्रिडों वाले निर्वात नलियों को ही 'टेट्रोड' कहते हैं।। इसमें ट्रायोड (त्रिअग्र) में मौजूद तीन एलेक्ट्रोड तो होते ही हैं, इनके अतिरिक्त एक 'स्क्रीन ग्रिड' (आवरण ग्रिड) भी होती है जिसके कारण इसके गुण टेट्रोड से काफी अलग होते हैं। .

नई!!: इलेक्ट्रॉन और टेट्रोड · और देखें »

एनोड किरणें

Anode ray tube showing the rays passing through the perforated cathode and causing the pink glow above it. एनोड किरणें या धन किरणें (Positive Rays) या कैनाल किरणें धनात्मक आयनों से निर्मित किरणपुंज है जो कुछ गैस डिस्चार्ज नलिकाओं में उत्पन्न होतीं है। इन्हें सबसे पहले १८८६ में जर्मन भौतिकशास्त्री यूगेन गोल्डस्टीन ने क्रुक्स-ट्यूब में प्रयोग करते समय देखा था। बाद में एनोड किरणों पर विल्हेम वीन (Wilhelm Wien) तथा जे जे थॉमसन ने कार्य किये जिसके परिणामस्वरूप द्रव्यमान स्पेक्ट्रमिकी (मास स्पेक्ट्रोस्कोपी) का विकास हुआ। .

नई!!: इलेक्ट्रॉन और एनोड किरणें · और देखें »

एलेक्ट्रॉन नलिका

एलेक्ट्रॉन नलिका (Electron tube) काँच या अन्य पदार्थ का नली से मिलता-जुलता संरचना है। इसमें एक एलेक्ट्रॉन का कोई स्रोत होता है जिससे निकलकर एलेक्ट्रॉन दूसरे प्लेट पर जाते हैं। इन एलेक्ट्रॉनों की संख्या, इनके वेग, इनकी उर्जा आदि को तरह-तरह से नियंत्रित किया जाता है। इस प्रकार बहुत सी युक्तियाँ एलेक्ट्रॉन नलिका का प्रयोग करके बनती हैं। उदाहरण के लिये, टेलिविजन मॉनिटर, कैथोड-किरण नलिका, निर्वात डायोड, ट्रायोड, थाइरेट्रॉन, मैग्नेट्रॉन, क्लाइस्ट्रॉन आदि। कुछ प्रकार की नलियों का उपयोग रेडियो-आवृत्ति-शक्ति (रेडियो फ्ऱीक्वेंसी पावर) उतपन्न करने में किया जाता है जिसका उपयोग रेडियो संग्राही (रिसीवर) तथा रेडियो प्रेषी (ट्रैंसमिटर) में किया जाता है। इन नलियों का उपयोग क्षीण संकेतों के प्रवर्धन (ऐंप्लिफ़िकेशन), ऋजुकरण (रेक्टिफ़िकेशन) तथा परिचयप्राप्तकरण (डिटेक्शन) में होता है। यह कहा जा सकता है कि साधारण इलेक्ट्रान नली की खोज ने ही रेडियो टेलीफोन, ध्वनिचित्र (बोलता सिनेमा), दूरवीक्षण (टेलिविज्हन), रेडियो आदि को जन्म दिया है। .

नई!!: इलेक्ट्रॉन और एलेक्ट्रॉन नलिका · और देखें »

एलेक्ट्रॉन पुंज वेल्डन

चित्र: एलेक्ट्रॉन पुंज वेल्डन या एलेक्ट्रान बीम वेल्डिंग (Electron beam welding (EBW)) वेल्डन की विधि है जिसमें उच्च उर्जा (या उच्च वेग) के एलेक्ट्रान का उपयोग किया जाता है। यह एक फ्यूजन वेल्डन प्रक्रिया है। जब एलेक्ट्रान पुंज जोड़ के आसपास के पदार्थों पर गिरता है तो उसकी गतिज उर्जा उष्मा में बदलकर पदार्थों को पिघला देती है और इसके ठंडा होने पर दोनो वस्तुएँ जुड़ जाती हैं। इससे प्राप्त वेल्ड उच्च गुणवत्ता का होता है। यह वेल्डन प्रायः निर्वात में किया जाता है ताकि एलेक्ट्रान बीम का डिस्पर्शन (dispersion) न हो। इस प्रक्रिया का विकास जर्मनी के भौतिकशास्त्री कार्ल हेंज स्टीगरवाल्ड (Karl-Heinz Steigerwald) ने किया था जो उस समय एलेक्ट्रान बीम के भिन्न-भिन्न अनुप्रयोगों पर ही काम कर रहे थे। उनके द्वारा विकसित इलेक्ट्रान बीम वेल्डिंग मशीन सन् १९५८ में कार्य करना आरम्भ की थी। श्रेणी:वेल्डिंग de:Schweißen#Elektronenstrahlschweißen.

नई!!: इलेक्ट्रॉन और एलेक्ट्रॉन पुंज वेल्डन · और देखें »

एंटीमैटर

एंटीमैटर क्लाउड कण भौतिकी में, प्रतिद्रव्य या एंटीमैटर (antimatter) वस्तुतः पदार्थ के एंटीपार्टिकल के सिद्धांत का विस्तार है। दूसरे शब्दों में, जिस प्रकार पदार्थ कणों का बना होता है उसी प्रकार प्रतिद्रव्य प्रतिकणों से मिलकर बना होता है। उदाहरण के लिये, एक एंटीइलेक्ट्रॉन (एक पॉज़ीट्रॉन, जो एक घनात्मक आवेश सहित एक इलेक्ट्रॉन होता है) एवं एक एंटीप्रोटोन (ऋणात्मक आवेश सहित एक प्रोटोन) मिल कर एक एंटीहाईड्रोजन परमाणु ठीक उसी प्रकार बना सकते हैं, जिस प्रकार एक इलेक्ट्रॉन एवं एक प्रोटोन मिल कर हाईड्रोजन परमाणु बनाते हैं। साथ ही पदार्थ एवं एंटीमैटर के संगम का परिणाम दोनों का विनाश (एनिहिलेशन) होता है, ठीक वैसे ही जैसे एंटीपार्टिकल एवं कण का संगम होता है। जिसके परिणामस्वरूप उच्च-ऊर्जा फोटोन (गामा किरण) या अन्य पार्टिकल-एंटीपार्टिकल युगल बनते हैं। वैसे विज्ञान कथाओं और साइंस फिक्शन चलचित्रों में कई बार एंटीमैटर का नाम सुना जाता रहा है। एंटीहाइड्रोजन परमाणु का त्रिआयामी चित्र एंटीमैटर केवल एक काल्पनिक तत्व नहीं, बल्कि असली तत्व होता है। इसकी खोज बीसवीं शताब्दी के पूर्वाद्ध में हुई थी। तब से यह आज तक वैज्ञानिकों के लिए कौतूहल का विषय बना हुआ है। जिस तरह सभी भौतिक वस्तुएं मैटर यानी पदार्थ से बनती हैं और स्वयं मैटर में प्रोटोन, इलेक्ट्रॉन और न्यूट्रॉन होते हैं, उसी तरह एंटीमैटर में एंटीप्रोटोन, पोसिट्रॉन्स और एंटीन्यूट्रॉन होते हैं।। नवभारत टाइम्स। १२ नवम्बर २००८। हिन्दुस्तान लाइव। ५ मार्च २०१० एंटीमैटर इन सभी सूक्ष्म तत्वों को दिया गया एक नाम है। सभी पार्टिकल और एंटीपार्टिकल्स का आकार एक समान किन्तु आवेश भिन्न होते हैं, जैसे कि एक इलैक्ट्रॉन ऋणावेशी होता है जबकि पॉजिट्रॉन घनावेशी चार्ज होता है। जब मैटर और एंटीमैटर एक दूसरे के संपर्क में आते हैं तो दोनों नष्ट हो जाते हैं। ब्रह्मांड की उत्पत्ति का सिद्धांत महाविस्फोट (बिग बैंग) ऐसी ही टकराहट का परिणाम था। हालांकि, आज आसपास के ब्रह्मांड में ये नहीं मिलते हैं लेकिन वैज्ञानिकों के अनुसार ब्रह्मांड के आरंभ के लिए उत्तरदायी बिग बैंग के एकदम बाद हर जगह मैटर और एंटीमैटर बिखरा हुआ था। विरोधी कण आपस में टकराए और भारी मात्रा में ऊर्जा गामा किरणों के रूप में निकली। इस टक्कर में अधिकांश पदार्थ नष्ट हो गया और बहुत थोड़ी मात्रा में मैटर ही बचा है निकटवर्ती ब्रह्मांड में। इस क्षेत्र में ५० करोड़ प्रकाश वर्ष दूर तक स्थित तारे और आकाशगंगा शामिल हैं। वैज्ञानिकों के अनुमान के अनुसार सुदूर ब्रह्मांड में एंटीमैटर मिलने की संभावना है। अंतरराष्ट्रीय स्तर के खगोलशास्त्रियों के एक समूह ने यूरोपीय अंतरिक्ष एजेंसी (ईएसए) के गामा-किरण वेधशाला से मिले चार साल के आंकड़ों के अध्ययन के बाद बताया है कि आकाश गंगा के मध्य में दिखने वाले बादल असल में गामा किरणें हैं, जो एंटीमैटर के पोजिट्रान और इलेक्ट्रान से टकराने पर निकलती हैं। पोजिट्रान और इलेक्ट्रान के बीच टक्कर से लगभग ५११ हजार इलेक्ट्रान वोल्ट ऊर्जा उत्सर्जित होती है। इन रहस्यमयी बादलों की आकृति आकाशगंगा के केंद्र से परे, पूरी तरह गोल नहीं है। इसके गोलाई वाले मध्य क्षेत्र का दूसरा सिरा अनियमित आकृति के साथ करीब दोगुना विस्तार लिए हुए हैं।। याहू जागरण। १४ जनवरी २००९ एंटीमैटर की खोज में रत वैज्ञानिकों का मानना है कि ब्लैक होल द्वारा तारों को दो हिस्सों में चीरने की घटना में एंटीमैटर अवश्य उत्पन्न होता होगा। इसके अलावा वे लार्ज हैडरन कोलाइडर जैसे उच्च-ऊर्जा कण-त्वरकों द्वारा एंटी पार्टिकल उत्पन्न करने का प्रयास भी कर रहे हैं। पार्टिकल एवं एंटीपार्टिकल पृथ्वी पर एंटीमैटर की आवश्यकता नहीं होती, लेकिन वैज्ञानिकों ने प्रयोगशालाओं में बहुत थोड़ी मात्रा में एंटीमैटर का निर्माण किया है। प्राकृतिक रूप में एंटीमैटर पृथ्वी पर अंतरिक्ष तरंगों के पृथ्वी के वातावरण में आ जाने पर अस्तित्व में आता है या फिर रेडियोधर्मी पदार्थ के ब्रेकडाउन से अस्तित्व में आता है। शीघ्र नष्ट हो जाने के कारण यह पृथ्वी पर अस्तित्व में नहीं आता, लेकिन बाह्य अंतरिक्ष में यह बड़ी मात्र में उपलब्ध है जिसे अत्याधुनिक यंत्रों की सहायता से देखा जा सकता है। एंटीमैटर नवीकृत ईंधन के रूप में बहुत उपयोगी होता है। लेकिन इसे बनाने की प्रक्रिया फिल्हाल इसके ईंधन के तौर पर अंतत: होने वाले प्रयोग से कहीं अधिक महंगी पड़ती है। इसके अलावा आयुर्विज्ञान में भी यह कैंसर का पेट स्कैन (पोजिस्ट्रान एमिशन टोमोग्राफी) के द्वारा पता लगाने में भी इसका प्रयोग होता है। साथ ही कई रेडिएशन तकनीकों में भी इसका प्रयोग प्रयोग होता है। नासा के मुताबिक, एंटीमैटर धरती का सबसे महंगा मैटेरियल है। 1 मिलिग्राम एंटीमैटर बनाने में 250 लाख डॉलर रुपये तक लग जाते हैं। एंटीमैटर का इस्तेमाल अंतरिक्ष में दूसरे ग्रहों पर जाने वाले विमानों में ईधन की तरह किया जा सकता है। 1 ग्राम एंटीमैटर की कीमत 312500 अरब रुपये (3125 खरब रुपये) है। .

नई!!: इलेक्ट्रॉन और एंटीमैटर · और देखें »

ऐमीन

ऐमीन को अमोनिया के एक, दो अथवा तीनों हाइड्रोजन परमाणुओं को ऐल्किल और/अथवा ऐरिल समूहों द्वारा विस्थापित कर प्राप्त हुए व्युत्पन्न के रूप में माना जा सकता है। .

नई!!: इलेक्ट्रॉन और ऐमीन · और देखें »

तरंग-कण द्वैतता

तरंग-कण द्वैतता अथवा तरंग-कण द्विरूप सिद्धान्त के अनुसार सभी पदार्थों में कण और तरंग (लहर) दोनों के ही लक्षण होते हैं। आधुनिक भौतिकी के क्वाण्टम यान्त्रिकी क्षेत्र का यह एक आधारभूत सिद्धान्त है। जिस स्तर पर मनुष्यों की इन्द्रियाँ दुनिया को भाँपती हैं, उस स्तर पर कोई भी वस्तु या तो कण होती है या तरंग होती है, लेकिन एक साथ दोनों नहीं होते। परमाणुओं के बहुत ही सूक्ष्म स्तर पर ऐसा नहीं होता और यहाँ भौतिकी समझने के लिए पाया गया कि वस्तुएँ और प्रकाश कभी तो कण की प्रकृति दिखाती हैं और कभी तरंग की। इस समय स्थिति बड़ी विलक्षण है। कुछ घटनाओं से तो प्रकाश तरंगमय प्रतीत होता है और कुछ से कणिकामय। संभवत: सत्य द्वैतमय है। रूपए के दोनों पृष्ठों की तरह, प्रकाश के भी दो विभिन्न रूप हैं। किंतु हैं दोनों ही सत्य। ऐसा ही द्वैत द्रव्य के संबंध में भी पाया गया है। वह भी कभी तरंगमय दिखाई देता है और कभी कणिकामय। न तो प्रकाश के ओर न द्रव्य के दोनों रूप एक ही समय में एक ही साथ दिखाई दे सकते हैं। वे परस्पर विरोधी, किंतु पूरक रूप हैं। .

नई!!: इलेक्ट्रॉन और तरंग-कण द्वैतता · और देखें »

तारकीय आंधी

अल्फ़ा आराए (α Arae) तारा बहुत तेज़ी से घूर्णन कर रहा है और २,००० किलोमीटर प्रति सैकिंड की तारकीय आंधी से तेज़ी से द्रव्यमान खो रहा है (विशेषकर अपने ध्रुवों से) तारकीय आंधी आणविक या आयोनित गैस के उस प्रवाह को कहते हैं जो किसी तारे के ऊपरी वायुमंडल से तारे के बाहर के व्योम में बहता है। इस आंधी से तारों का द्रव्यमान तीव्र या धीमी गति से कम होता रहता है। भिन्न प्रकार के तारों की अलग-अलग तरह की तारकीय आंधियाँ होती हैं.

नई!!: इलेक्ट्रॉन और तारकीय आंधी · और देखें »

दुर्बल अन्योन्य क्रिया

दुर्बल अन्योन्य क्रिया (अक्सर दुर्बल बल व दुर्बल नाभिकीय बल के नाम से भी जाना जाता है) प्रकृति की चार मूलभूत अन्योन्य क्रियाओं में से एक है, अन्य चार अन्योन्य क्रियाएं गुरुत्वाकर्षण, विद्युत चुम्बकीय अन्योन्य क्रिया और प्रबल अन्योन्य क्रिया हैं। यह अन्योन्य क्रिया, उप-परमाणविक कणों के रेडियोधर्मी क्षय और नाभिकीय संलयन के लिए उत्तरदायी है। सभी ज्ञात फर्मिऑन (वे कण जिनका स्पिन अर्द्ध-पूर्ण संख्या होती है) यह अन्योन्य क्रिया करते हैं। कण भौतिकी मेंमानक प्रतिमान के अनुसार दुर्बल अन्योन्य क्रिया Z अथवा W बोसॉन के विनिमय (उत्सर्जन अथवा अवशोषण) से होती है और अन्य तीन बलों की भांती यह भी अस्पृशी बल माना जाता है। बीटा क्षय रेडियोधर्मिता का एक उदाहरण इस क्रिया का सबसे ज्ञात उदाहरण है। W व Z बोसॉनों का द्रव्यमान प्रोटोन व न्यूट्रोन की तुलना में बहुत अधीक होता है और यह भारीपन ही दुर्बल बल की परास कम होने का मुख्य कारण है। इसे दुर्बल बल कहने का कारण इस बल का अन्य दो बलों विद्युत चुम्बकीय व प्रबल की तुलना में इसका मान का परिमाण की कोटि कई गुणा कम होना है। अधिकतर कण समय के साथ दुर्बल बल के अधीन क्षय होते हैं। क्वार्क फ्लेवर परिवर्तन भी केवल इस बल के अधीन ही होता है। .

नई!!: इलेक्ट्रॉन और दुर्बल अन्योन्य क्रिया · और देखें »

द्रव्यमान वर्णक्रममाप

द्रव्यमान वर्णक्रममाप (Mass spectrometry) एक विश्लेषणात्मक तकनीक है जिस के द्वारा किसी मिश्रण में उपस्थित पृथक रासायनिक जातियों को पहले आयनित कर के विद्युत आवेश दिया जाता है और फिर उनके द्रव्यमान-से-आवेश अनुपात (mass to charge ratio) के आधार पर अलग-अलग करा जाता है। इस तकनीक के द्वारा किसी भी मिश्रित सामग्री में मौजूद अलग-अलग रासायनों का पता लगाया जा सकता है। .

नई!!: इलेक्ट्रॉन और द्रव्यमान वर्णक्रममाप · और देखें »

दो-वस्तु समस्या

खगोलीय यांत्रिकी में दो-वस्तु समस्या (two-body problem) दो बिन्दु-आकार की वस्तुओं की गति व चाल को समझने को कहते हैं जो केवल एक-दूसरे को ही प्रभावित करती हैं (यानि कोई भी तीसरी वस्तु इस अध्ययन में शामिल नहीं करी जाती)। इस अध्ययन में किसी ग्रह के इर्द-गिर्द कक्षा में परिक्रमा करता उपग्रह, किसी तारे की परिक्रमा करता एक ग्रह, किसी द्वितारा मंडल में एक-दूसरे की परिक्रमा करते दो तारे, इत्यादि शामिल हैं। चिरसम्मत भौतिकी में किसी परमाणु में नाभिक की परिक्रमा करता हुआ एक इलेक्ट्रान भी इसका उदाहरण है (हालांकि प्रमात्रा यान्त्रिकी की नई समझ में यह दो-वस्तु समस्या नहीं समझी जाती)। इसी प्रकार तीन वस्तुओं की आपसी चाल को समझने के लिये तीन-वस्तु समस्या (three-body problem) नामक अध्ययन भी किया जाता है। .

नई!!: इलेक्ट्रॉन और दो-वस्तु समस्या · और देखें »

धनाग्र

ऐनोड धनाग्र (ऐनोड / anode) उस विद्युताग्र (इलेक्ट्रोड) को कहते हैं जिससे होकर किसी वैद्युत युक्ति में विद्युत धारा प्रवेश करती है। विद्युत धारा की दिशा इलेक्ट्रॉन के प्रवाह की दिशा के विपरीत होती है। श्रेणी:विद्युत.

नई!!: इलेक्ट्रॉन और धनाग्र · और देखें »

धातु

'धातु' के अन्य अर्थों के लिए देखें - धातु (बहुविकल्पी) ---- '''धातुएँ''' - मानव सभ्यता के पूरे इतिहास में सर्वाधिक प्रयुक्त पदार्थों में धातुएँ भी हैं लुहार द्वारा धातु को गर्म करने पर रसायनशास्त्र के अनुसार धातु (metals) वे तत्व हैं जो सरलता से इलेक्ट्रान त्याग कर धनायन बनाते हैं और धातुओं के परमाणुओं के साथ धात्विक बंध बनाते हैं। इलेक्ट्रानिक मॉडल के आधार पर, धातु इलेक्ट्रानों द्वारा आच्छादित धनायनों का एक लैटिस हैं। धातुओं की पारम्परिक परिभाषा उनके बाह्य गुणों के आधार पर दी जाती है। सामान्यतः धातु चमकीले, प्रत्यास्थ, आघातवर्धनीय और सुगढ होते हैं। धातु उष्मा और विद्युत के अच्छे चालक होते हैं जबकि अधातु सामान्यतः भंगुर, चमकहीन और विद्युत तथा ऊष्मा के कुचालक होते हैं। .

नई!!: इलेक्ट्रॉन और धातु · और देखें »

धातु हाइड्रोजन

बृहस्पति जैसे कुछ गैस दानव ग्रहों के केन्द्रों में धातु हाइड्रोजन है धातु हाइड्रोजन (metallic hydrogen) हाइड्रोजन की ऐसी अवस्था को कहते हैं जब वह भयंकर दबाव में कुचली जाकर अवस्था परिवर्तन (phase transition) करके विकृत हो जाए।, Gabor Kalman, J. Martin Rommel, Krastan Blagoev, Kastan Blagoev, Springer, 1998, ISBN 978-0-306-46031-9,...

नई!!: इलेक्ट्रॉन और धातु हाइड्रोजन · और देखें »

नाइट्राइड

नाइट्राइड (nitride) नाइट्रोजन के ऐसे रासायनिक यौगिक (कम्पाउंड) जिसमें नाइट्रोजन परमाणु की ऑक्सीकरण संख्या -3 हो, यानि वह उस यौगिक में बंधे हुए अन्य तत्वों से तीन इलेक्ट्रान ले चुका हो। नाइट्राइड यौगिकों के कई उपयोग होते हैं। रासायनिक दृष्टि से ऐसे नाइट्राइड आयन को N3− लिखा जाता है। .

नई!!: इलेक्ट्रॉन और नाइट्राइड · और देखें »

निहारिका

चील नॅब्युला का वह भाग जिसे "सृजन के स्तम्भ" कहा जाता है क्योंकि यहाँ बहुत से तारे जन्म ले रहे हैं। त्रिकोणीय उत्सर्जन गैरेन नीहारिका (द ट्रेंगुलम एमीशन गैरन नॅब्युला) ''NGC 604'' नासा द्वारा जारी क्रैब नॅब्युला (कर्कट नीहारिका) वीडियो निहारिका या नॅब्युला अंतरतारकीय माध्यम (इन्टरस्टॅलर स्पेस) में स्थित ऐसे अंतरतारकीय बादल को कहते हैं जिसमें धूल, हाइड्रोजन गैस, हीलियम गैस और अन्य आयनीकृत (आयोनाइज़्ड) प्लाज़्मा गैसे उपस्थित हों। पुराने जमाने में "निहारिका" खगोल में दिखने वाली किसी भी विस्तृत वस्तु को कहते थे। आकाशगंगा (हमारी गैलेक्सी) से परे कि किसी भी गैलेक्सी को नीहारिका ही कहा जाता था। बाद में जब एडविन हबल के अनुसन्धान से यह ज्ञात हुआ कि यह गैलेक्सियाँ हैं, तो नाम बदल दिए गए। उदाहरण के लिए एंड्रोमेडा गैलेक्सी (देवयानी मन्दाकिनी) को पहले एण्ड्रोमेडा नॅब्युला के नाम से जाना जाता था। नीहारिकाओं में अक्सर तारे और ग्रहीय मण्डल जन्म लेते हैं, जैसे कि चील नीहारिका में देखा गया है। यह नीहारिका नासा द्वारा खींचे गए "पिलर्स ऑफ़ क्रियेशन" अर्थात् "सृष्टि के स्तम्भ" नामक अति-प्रसिद्ध चित्र में दर्शाई गई है। इन क्षेत्रों में गैस, धूल और अन्य सामग्री की संरचनाएं परस्पर "एक साथ जुड़कर" बड़े ढेरों की रचना करती हैं, जो अन्य पदार्थों को आकर्षित करता है एवं क्रमशः सितारों का गठन करने योग्य पर्याप्त बड़ा आकार ले लेता हैं। माना जाता है कि शेष सामग्री ग्रहों एवं ग्रह प्रणाली की अन्य वस्तुओं का गठन करती है। .

नई!!: इलेक्ट्रॉन और निहारिका · और देखें »

परमाणु

एक परमाणु किसी भी साधारण से पदार्थ की सबसे छोटी घटक इकाई है जिसमे एक रासायनिक तत्व के गुण होते हैं। हर ठोस, तरल, गैस, और प्लाज्मा तटस्थ या आयनन परमाणुओं से बना है। परमाणुओं बहुत छोटे हैं; विशिष्ट आकार लगभग 100 pm (एक मीटर का एक दस अरबवें) हैं। हालांकि, परमाणुओं में अच्छी तरह परिभाषित सीमा नहीं होते है, और उनके आकार को परिभाषित करने के लिए अलग अलग तरीके होते हैं जोकि अलग लेकिन काफी करीब मूल्य देते हैं। परमाणुओं इतने छोटे है कि शास्त्रीय भौतिकी इसका काफ़ी गलत परिणाम देते हैं। हर परमाणु नाभिक से बना है और नाभिक एक या एक से अधिक इलेक्ट्रॉन्स से सीमित है। नाभिक आम तौर पर एक या एक से अधिक न्यूट्रॉन और प्रोटॉन की एक समान संख्या से बना है। प्रोटान और न्यूट्रान न्यूक्लिऑन कहलाता है। परमाणु के द्रव्यमान का 99.94% से अधिक भाग नाभिक में होता है। प्रोटॉन पर सकारात्मक विद्युत आवेश होता है, इलेक्ट्रॉन्स पर नकारात्मक विद्युत आवेश होता है और न्यूट्रान पर कोई भी विद्युत आवेश नहीं होता है। एक परमाणु के इलेक्ट्रॉन्स इस विद्युत चुम्बकीय बल द्वारा एक परमाणु के नाभिक में प्रोटॉन की ओर आकर्षित होता है। नाभिक में प्रोटॉन और न्यूट्रॉन एक अलग बल, यानि परमाणु बल के द्वारा एक दूसरे को आकर्षित करते है, जोकि विद्युत चुम्बकीय बल जिसमे सकारात्मक आवेशित प्रोटॉन एक दूसरे से पीछे हट रहे हैं, की तुलना में आम तौर पर शक्तिशाली है। परमाणु के केन्द्र में नाभिक (न्यूक्लिअस) होता है जिसका घनत्व बहुत अधिक होता है। नाभिक के चारो ओर ऋणात्मक आवेश वाले एलेक्ट्रान चक्कर लगाते रहते हैं जिसको एलेक्ट्रान घन (एलेक्ट्रान क्लाउड) कहते हैं। नाभिक, धनात्मक आवेश वाले प्रोटानों एवं अनावेशित (न्यूट्रल) न्यूट्रानों से बना होता है। जब किसी परमाणु में एलेक्ट्रानों की संख्या उसके नाभिक में स्थित प्रोटानों की संख्या के समान होती है तब परमाणु वैद्युकीय दृष्टि से अनावेशित होता है; अन्यथा परमाणु धनावेशित या ऋणावेशित ऑयन के रूप में होता है। आधुनिक रसायनशास्त्र में शताधिक मूल भूत माने गए हैं, जिनमें से कुछ तो धातुएँ हैं जैसे ताँबा, सोना, लोहा, सीसा, चाँदी, राँगा, जस्ता; कुछ और खनिज हैं, जैसे, गंधक, फासफरस, पोटासियम, अंजन, पारा, हड़ताल, तथा कुछ गैस हैं, जैसे, आक्सीजन, नाइट्रोजन, हाइड्रोजन आदि। इन्हीं मूल भूतों के अनुसार परमाणु आधुनिक रसायन में माने जाते हैं। पहले समझा जाता था कि ये अविभाज्य हैं। अब इनके भी टुकड़े कर दिए गए हैं। नाभिक में प्रोटॉन की संख्या किसी रासायनिक तत्व को परिभाषित करता है: जैसे सभी तांबा के परमाणु में 29 प्रोटॉन होते हैं। न्यूट्रॉन की संख्या तत्व के समस्थानिक को परिभाषित करता है। इलेक्ट्रॉनों की संख्या एक परमाणु के चुंबकीय गुण को प्रभावित करता है। परमाणु अणु के रूप में रासायनिक यौगिक बनाने के लिए रासायनिक आबंध द्वारा एक या अधिक अन्य परमाणुओं को संलग्न कर सकते हैं। परमाणु की संघटित और असंघटित करने की क्षमता प्रकृति में हुए बहुत से भौतिक परिवर्तन के लिए जिम्मेदार है, और रसायन शास्त्र के अनुशासन का विषय है। .

नई!!: इलेक्ट्रॉन और परमाणु · और देखें »

परमाणु नाभिक

नाभिक, परमाणु के मध्य स्थित धनात्मक वैद्युत आवेश युक्त अत्यन्त ठोस क्षेत्र होता है। नाभिक, नाभिकीय कणों प्रोटॉन तथा न्यूट्रॉन से बने होते है। इस कण को नूक्लियान्स कहते है। प्रोटॉन व न्यूट्रॉन दोनो का द्रव्यमान लगभग बराबर होता है और दोनों का आंतरिक कोणीय संवेग (स्पिन) १/२ होता है। प्रोटॉन इकाई विद्युत आवेशयुक्त होता है जबकि न्यूट्रॉन अनावेशित होता है। प्रोटॉन और न्यूट्रॉन दोनो न्यूक्लिऑन कहलाते है। नाभिक का व्यास (10−15 मीटर)(हाइड्रोजन-नाभिक) से (10−14 मीटर)(युरेनियम) के दायरे में होता है। परमाणु का लगभग सारा द्रव्यमान नाभिक के कारण ही होता है, इलेक्ट्रान का योगदान लगभग नगण्य होता है। सामान्यतः नाभिक की पहचान परमाणु संख्या Z (प्रोटॉन की संख्या), न्यूट्रॉन संख्या N और द्रव्यमान संख्या A(प्रोटॉन की संख्या + न्यूट्रॉन संख्या) से होती है जहाँ A .

नई!!: इलेक्ट्रॉन और परमाणु नाभिक · और देखें »

परमाणु भौतिकी

परमाणु भौतिकी (Atomic physics) के अन्तर्गत परमाणुओं का अध्ययन इलेक्ट्रानों तथा परमाणु नाभिक के विलगित निकाय के रूप में किया जाता है। इसमें अध्ययन का बिन्दु मुख्यतः यह होता है कि नाभिक के चारों तरफ इलेक्ट्रानों का विन्यास (arrangement) कैसा है और किस प्रक्रिया के द्वारा यह विन्यास परिवर्तित होता है। .

नई!!: इलेक्ट्रॉन और परमाणु भौतिकी · और देखें »

परमाणु कक्षक

पहले पांच परमाणु कक्षाओं का आकार क्वांटम यांत्रिकी में, एक परमाणु कक्षीय एक गणितीय समारोह में कहा कि या तो एक इलेक्ट्रॉन या एक परमाणु में इलेक्ट्रॉनों की एक जोड़ी की लहर की तरह व्यवहार का वर्णन करता है। इस समारोह में एक परमाणु के किसी भी इलेक्ट्रॉन पाने की संभावना की गणना करने के लिए इस्तेमाल किया जा सकता परमाणु के नाभिक के चारों ओर किसी भी विशिष्ट क्षेत्र में। अवधि, परमाणु कक्षीय, यह भी शारीरिक क्षेत्र या स्थान जहां इलेक्ट्रॉन, के रूप में कक्षीय की विशेष गणितीय रूप से परिभाषित उपस्थित होने के लिए गणना की जा सकती करने के लिए उल्लेख कर सकते हैं। एक परमाणु में प्रत्येक कक्षीय तीन क्वांटम संख्या n, ℓ, और मीटर के मूल्यों, जो क्रमशः इलेक्ट्रॉन की ऊर्जा, कोणीय गति, और एक कोणीय गति वेक्टर घटक (चुंबकीय क्वांटम संख्या) के अनुरूप की एक अद्वितीय सेट की विशेषता है। इस तरह प्रत्येक कक्षीय दो इलेक्ट्रॉनों के साथ अपने स्वयं के स्पिन क्वांटम संख्या प्रत्येक की एक अधिकतम द्वारा कब्जा किया जा सकता है। परमाणु कक्षाओं परमाणु कक्षीय मॉडल (वैकल्पिक रूप से बादल इलेक्ट्रॉन या लहर यांत्रिकी मॉडल के रूप में जाना जाता है), इस मामले में इलेक्ट्रॉनों की उपसूक्ष्म व्यवहार विसशवलयिसिग के लिए एक आधुनिक ढांचे की बुनियादी इमारत ब्लॉकों हैं। इस मॉडल में एक बहु इलेक्ट्रॉन परमाणु के इलेक्ट्रॉन बादल (सन्निकटन में) का निर्माण किया जा रहा है एक इलेक्ट्रॉन विन्यास सरल हाइड्रोजन की तरह परमाणु कक्षाओं का एक उत्पाद है कि के रूप में देखा जा सकता है .

नई!!: इलेक्ट्रॉन और परमाणु कक्षक · और देखें »

परमाणु क्रमांक

रसायन विज्ञान एवं भौतिकी में सभी तत्वों का अलग-अलग परमाणु क्रमांक (atomic number) है जो एक तत्व को दूसरे तत्व से अलग करता है। किसी तत्व का परमाणु क्रमांक उसके तत्व के नाभिक में स्थित प्रोटॉनों की संख्या के बराबर होता है। इसे Z प्रतीक से प्रदर्शित किया जाता है। किसी आवेशरहित परमाणु पर एलेक्ट्रॉनों की संख्या भी परमाणु क्रमांक के बराबर होती है। रासायनिक तत्वों को उनके बढते हुए परमाणु क्रमांक के क्रम में विशेष रीति से सजाने से आवर्त सारणी का निर्माण होता है जिससे अनेक रासायनिक एवं भौतिक गुण स्वयं स्पष्ट हो जाते हैं।, American Institute of Physics .

नई!!: इलेक्ट्रॉन और परमाणु क्रमांक · और देखें »

पल्म पुडिंग मॉडल

The current model of the sub-atomic structure involves a dense nucleus surrounded by a probabilistic "cloud" of electrons पल्म पुडिंग मॉडल 1904 में जे जे थॉमसन द्वारा प्रस्तावित परमाणु का एक अप्रचलित वैज्ञानिक मॉडल है। इसको जे जे थॉमसन मॉडल भी कहा जाता है। इसे इलेक्ट्रॉन की खोज के शीघ्र ही बाद, और परमाणु नाभिक की खोज से पहले तैयार किया गया था। .

नई!!: इलेक्ट्रॉन और पल्म पुडिंग मॉडल · और देखें »

पश्चिमी संस्कृति

पश्चिमी संस्कृति (जिसे कभी-कभी पश्चिमी सभ्यता या यूरोपीय सभ्यता के समान माना जाता है), यूरोपीय मूल की संस्कृतियों को सन्दर्भित करती है। यूनानियों के साथ शुरू होने वाली पश्चिमी संस्कृति का विस्तार और सुदृढ़ीकरण रोमनों द्वारा हुआ, पंद्रहवी सदी के पुनर्जागरण एवं सुधार के माध्यम से इसका सुधार और इसका आधुनिकीकरण हुआ और सोलहवीं सदी से लेकर बीसवीं सदी तक जीवन और शिक्षा के यूरोपीय तरीकों का प्रसार करने वाले उत्तरोत्तर यूरोपीय साम्राज्यों द्वारा इसका वैश्वीकरण हुआ। दर्शन, मध्ययुगीन मतवाद एवं रहस्यवाद, ईसाई एवं धर्मनिरपेक्ष मानवतावाद की एक जटिल श्रृंखला के साथ यूरोपीय संस्कृति का विकास हुआ। ज्ञानोदय, प्रकृतिवाद, स्वच्छंदतावाद (रोमेन्टिसिज्म), विज्ञान, लोकतंत्र और समाजवाद के प्रयोगों के साथ परिवर्तन एवं निर्माण के एक लंबे युग के माध्यम से तर्कसंगत विचारधारा विकसित हुई.

नई!!: इलेक्ट्रॉन और पश्चिमी संस्कृति · और देखें »

पाउली अपवर्जन नियम

पाउली का अपवर्जन का नियम (Pauli exclusion principle) क्वाण्टम यांत्रिकी का एक सिद्धान्त है जिसे सन् १९२५ में वुल्फगांग पाउली ने प्रतिपादित किया था। (अपवर्जन का अर्थ होता है - छोड़ना, अलग नियम लागू होना, आदि।) इस सिद्धान्त के अनुसार- किसी एक ही परमाणु में स्थित इलेक्ट्रॉनों के लिये यह नियम कहता है कि "किन्ही भी दो इलेक्ट्रॉनों की चारों (यानी सभी) प्रमात्रा संख्याएं एक समान नहीं हो सकतीं। इस सिद्धान्त के अनुसार समान अवस्था वाले अथवा समान गुणधर्म वाले दो कण (जिनके प्रचक्रण, कलर चार्ज, कोणीय संवेग इत्यदि समान हो) किसी एक समय मे किसी एक स्थान पर नहीं रह सकते है। जो कण इस सिध्दांत का पालन करते है, फर्मिऑन कहलाते है, जैसे: इलेक्ट्रॉन, प्राणु, न्यूट्रॉन इत्यादि; एवं जो कण इस सिध्दांत का पालन नहीं करते है, बोसॉन कहलाते है, जैसे: फोटॉन, ग्लुऑन, गेज बोसान। .

नई!!: इलेक्ट्रॉन और पाउली अपवर्जन नियम · और देखें »

पुनर्भरणीय विद्युत्कोष

तरह-तरह की पुनर्भरणीय बैटरियाँ जिन बैटरियों को पुन: आवेशित करके पुनः विद्युत ऊर्जा ली जा सकती है उन्हें पुनर्भरणीय बैटरी (rechargeable battery) कहते हैं। इन्हें द्वितीयक सेल भी कहते हैं। इनमें होने वाली विद्युतरासायनिक अभिक्रियाएँ विद्युतीय रूप से उत्क्रमणीय (electrically reversible) होती हैं। पुनर्भरणीय बैटरियाँ विभिन्न आकार-प्रकार की होतीं है - बटन सेल से लेकर मेगावाट शक्ति प्रदान करने वाली प्रणालियाँ (विद्युत वितरण को स्थायित्व प्रदान करने के लिये) .

नई!!: इलेक्ट्रॉन और पुनर्भरणीय विद्युत्कोष · और देखें »

प्रचलित गलत धारणाओं की सूची

यहाँ पर उन धारणाओं का विवरण दिया गया है जो जनसाधारण में व्यापक रूप से प्रचलित हैं किन्तु गहराई से विचार करने पर पता चलता है कि उनमें त्रुटि है। .

नई!!: इलेक्ट्रॉन और प्रचलित गलत धारणाओं की सूची · और देखें »

प्रति-कण

कण (बायें) और प्रति-कण (दायें) के आकार और विद्युत आवेश का चित्रण। ऊपर से नीचे इलेक्ट्रॉन/पोजीट्रॉन,प्रोटॉन/प्रतिप्रोटोन, न्यूट्रॉन/प्रतिन्यूट्रॉन. किसी भी कण से संबद्ध प्रतिकण भी होता है जिसका द्रव्यमान अभिन्न होता है लेकिन विद्युत आवेश विपरीत होता है। उदाहरण के लिये इलेक्ट्रॉन का प्रति-कण प्रति-इलेक्ट्रॉन एक धनावेशित कण जिसे पोजीट्रॉन कहते हैं, सामान्यतः इसे रेडियोधर्मी पदार्थों के क्षय से बनाया जाता है। प्रकृति के नियम कणों और प्रतिकणो के लिये लगभग सममितीय होते हैं। उदाहरण के लिये एक प्रतिप्रोटोन और पोजीट्रॉन से प्रति-हाइड्रोजन परमाणु का निर्माण होता है, जिसके गुणधर्म भी हाइड्रोजन परमाणु के समान ही हैं। .

नई!!: इलेक्ट्रॉन और प्रति-कण · और देखें »

प्रतिऑक्सीकारक

एक एंटीऑक्सीडेंट- मेटाबोलाइट ग्लूटाथायोन का प्रतिरूप। पीले गोले रेडॉक्स-सक्रिय गंधक अणु हैं, जो एंटीऑक्सीडेंट क्रिया उपलब्ध कराते हैं और लाल, नीले व गहरे सलेटी गोले क्रमशः ऑक्सीजन, नाईट्रोजन, हाईड्रोजन एवं कार्बन परमाणु हैं। प्रतिऑक्सीकारक (Antioxidants) या प्रतिउपचायक वे यौगिक हैं जिनको अल्प मात्रा में दूसरे पदार्थो में मिला देने से वायुमडल के ऑक्सीजन के साथ उनकी अभिक्रिया का निरोध हो जाता है। इन यौगिकों को ऑक्सीकरण निरोधक (OXidation inhibitor) तथा स्थायीकारी (Stabiliser) भी कहते हैं तथा स्थायीकारी (Stabiliser) भी कहते हैं। अर्थात प्रति-आक्सीकारक वे अणु हैं, जो अन्य अणुओं को ऑक्सीकरण से बचाते हैं या अन्य अणुओं की आक्सीकरण प्रक्रिया को धीमा कर देते हैं। ऑक्सीकरण एक प्रकार की रासायनिक क्रिया है जिसके द्वारा किसी पदार्थ से इलेक्ट्रॉन या हाइड्रोजन ऑक्सीकारक एजेंट को स्थानांतरित हो जाते हैं। प्रतिआक्सीकारकों का उपयोग चिकित्साविज्ञान तथा उद्योगों में होता है। पेट्रोल में प्रतिआक्सीकारक मिलाए जाते हैं। ये प्रतिआक्सीकारक चिपचिपाहट पैदा करने वाले पदार्थ नहीं बनने देते जो अन्तर्दहन इंजन के लिए हानिकारक हैं। प्रायः प्रतिस्थापित फिनोल (Substituted phenols) एवं फेनिलेनेडिआमाइन के व्युत्पन्न (derivatives of phenylenediamine) इस काम के लिए प्रयुक्त होते हैं। .

नई!!: इलेक्ट्रॉन और प्रतिऑक्सीकारक · और देखें »

प्रदर्शक

प्रदर्शक (मॉनिटर) एक ऐसा यन्त्र है जिस पर संगणक का हर कार्य दिखाई देता है। .

नई!!: इलेक्ट्रॉन और प्रदर्शक · और देखें »

प्रयोग

बेंजामिन फ्रैंकलिन का तड़ित सम्बन्धी प्रयोग किसी वैज्ञानिक जिज्ञासा (scientific inquiry) के समाधान के लिये उससे सम्बन्धित क्षेत्र में और अधिक आंकड़े (data) एकत्र करने जी आवश्यकता होती है। इन आंकड़ों की प्राप्ति के लिये जो कुछ किया जाता है उसे प्रयोग (experiment) कहते हैं। प्रयोग, वैज्ञानिक विधि का प्रमुख स्तम्भ है। प्रयोग करना एवं आंकड़े प्राप्त करना इसलिये भी जरूरी है ताकि सिद्धान्त के प्रतिपादन में कहीं पूर्वाग्रह या पक्षपात आड़े न आ जाँए। किसी क्षेत्र के गहन अध्ययन एवं ज्ञान के लिये प्रयोग का बहुत महत्व है। प्राकृतिक एवं सामाजिक दोनो ही विज्ञानों में प्रयोग की महती भूमिका है। व्यावहारिक समस्याओं के समाधान में, कम ज्ञात क्षेत्रों के और अधिक जानकारी प्राप्ति के लिये तथा सैद्धान्तिक मान्यताओं (theoretical assumptions) की जाँच के लिये प्रयोग करने की जरूरत पड़ती रहती है। कुछ प्रयोग इसलिये नहीं किये जा सकते कि वे बहुत महंगे हो सकते हैं, बहुत भयंकर हो सकते हैं या उन्हें करना नैतिक दृष्टि से मान्य नहीं है। .

नई!!: इलेक्ट्रॉन और प्रयोग · और देखें »

प्रकाश उत्सर्जक डायोड

एल.ई.डी की आंतरिक संरचना प्रकाश उत्सर्जन डायोड (अंग्रेज़ी:लाइट एमिटिंग डायोड) एक अर्ध चालक-डायोड होता है, जिसमें विद्युत धारा प्रवाहित करने पर यह प्रकाश उत्सर्जित करता है। यह प्रकाश इसकी बनावट के अनुसार किसी भी रंग का हो सकता है। एल.ई.डी.

नई!!: इलेक्ट्रॉन और प्रकाश उत्सर्जक डायोड · और देखें »

प्रकाश-संश्लेषण

हरी पत्तियाँ, प्रकाश संश्लेषण के लिये प्रधान अंग हैं। सजीव कोशिकाओं के द्वारा प्रकाशीय उर्जा को रासायनिक ऊर्जा में परिवर्तित करने की क्रिया को प्रकाश संश्लेषण (फोटोसिन्थेसिस) कहते है। प्रकाश संश्लेषण वह क्रिया है जिसमें पौधे अपने हरे रंग वाले अंगो जैसे पत्ती, द्वारा सूर्य के प्रकाश की उपस्थिति में वायु से कार्बनडाइऑक्साइड तथा भूमि से जल लेकर जटिल कार्बनिक खाद्य पदार्थों जैसे कार्बोहाइड्रेट्स का निर्माण करते हैं तथा आक्सीजन गैस (O2) बाहर निकालते हैं। प्रकाश संश्लेषण की प्रक्रिया में सूर्य के प्रकाश की उपस्थिति में पौधों की हरी पत्तियों की कोंशिकाओं के अन्दर कार्बन डाइआक्साइड और पानी के संयोग से पहले साधारण कार्बोहाइड्रेट और बाद में जटिल काबोहाइड्रेट का निर्माण होता है। इस प्रक्रिया में आक्सीजन एवं ऊर्जा से भरपूर कार्बोहाइड्रेट (सूक्रोज, ग्लूकोज, स्टार्च (मंड) आदि) का निर्माण होता है तथा आक्सीजन गैस बाहर निकलती है। जल, कार्बनडाइऑक्साइड, सूर्य का प्रकाश तथा क्लोरोफिल (पर्णहरित) को प्रकाश संश्लेषण का अवयव कहते हैं। इसमें से जल तथा कार्बनडाइऑक्साइड को प्रकाश संश्लेषण का कच्चा माल कहा जाता है। प्रकाश संश्लेषण की प्रक्रिया सबसे महत्वपूर्ण जैवरासायनिक अभिक्रियाओं में से एक है। सीधे या परोक्ष रूप से दुनिया के सभी सजीव इस पर आश्रित हैं। प्रकाश संश्वेषण करने वाले सजीवों को स्वपोषी कहते हैं। .

नई!!: इलेक्ट्रॉन और प्रकाश-संश्लेषण · और देखें »

प्रकाश-विद्युत प्रभाव

किसी धातु के प्लेट से एलेक्ट्रानों का उत्सर्जन प्रकाशविद्युत प्रभाव का अध्ययन करने के लिये प्रयोग। इसमें प्रकाश स्रोत एक पतली आवृत्ति बैण्ड वाला (लगभग एकवर्णी) लेते हैं। इस प्रकाश को कैथोड पर डालते हैं जो निर्वात में स्थित है। एनोड और कैथोड के बीच विभवान्तर से यह निर्धारित हो जाता है कि कैथोड से उत्सर्जित वे ही इलेक्ट्रान एनोड तक आ पायेंगे जिनके पास निकलते समय eV से अधिक गतिज ऊर्जा होगी। धारा की मात्रा (μA), प्राप्त इलेक्ट्रानों की संख्या के समानुपाती होगी। जब कोई पदार्थ (धातु एवं अधातु ठोस, द्रव एवं गैसें) किसी विद्युतचुम्बकीय विकिरण (जैसे एक्स-रे, दृष्य प्रकाश आदि) से उर्जा शोषित करने के बाद इलेक्ट्रॉन उत्सर्जित करता है तो इसे प्रकाश विद्युत प्रभाव (photoelectric effect) कहते हैं। इस क्रिया में जो एलेक्ट्रान निकलते हैं उन्हें "प्रकाश-इलेक्ट्रॉन" (photoelectrons) कहते हैं। सन 1887 मे एच.

नई!!: इलेक्ट्रॉन और प्रकाश-विद्युत प्रभाव · और देखें »

प्रोटॉन

प्राणु संरचना प्राणु (प्रोटॉन) एक धनात्मक विध्युत आवेशयुक्त मूलभूत कण है, जो परमाणु के नाभिक में न्यूट्रॉन के साथ पाया जाता हैं। इसे p प्रतिक चिन्ह द्वारा दर्शाया जाता है। इस पर 1 दो अप-क्वार्क और एक डाउन-क्वार्क से मिलकर बना होता है। स्वतंत्र रूप से यह उदजन आयन H+ के रूप में पाया जाता है। .

नई!!: इलेक्ट्रॉन और प्रोटॉन · और देखें »

प्लाज़्मा (भौतिकी)

प्लाज्मा दीप भौतिकी और रसायन शास्त्र में, प्लाज्मा आंशिक रूप से आयनीकृत एक गैस है, जिसमें इलेक्ट्रॉनों का एक निश्चित अनुपात किसी परमाणु या अणु के साथ बंधे होने के बजाय स्वतंत्र होता है। प्लाज्मा में धनावेश और ऋणावेश की स्वतंत्र रूप से गमन करने की क्षमता प्लाज्मा को विद्युत चालक बनाती है जिसके परिणामस्वरूप यह दृढ़ता से विद्युत चुम्बकीय क्षेत्रों से प्रतिक्रिया कर पाता है। प्लाज्मा के गुण ठोस, द्रव या गैस के गुणों से काफी विपरीत हैं और इसलिए इसे पदार्थ की एक भिन्न अवस्था माना जाता है। प्लाज्मा आमतौर पर, एक तटस्थ-गैस के बादलों का रूप ले लेता है, जैसे सितारों में। गैस की तरह प्लाज्मा का कोई निश्चित आकार या निश्चित आयतन नहीं होता जब तक इसे किसी पात्र में बंद न कर दिया जाए लेकिन गैस के विपरीत किसी चुंबकीय क्षेत्र के प्रभाव में यह एक फिलामेंट, पुंज या दोहरी परत जैसी संरचनाओं का निर्माण करता है। प्लाज़्मा ग्लोब एक सजावटी वस्तु होती है, जिसमें एक कांच के गोले में कई गैसों के मिश्रण में इलेक्ट्रोड द्वारा गोले तक कई रंगों की किरणें चलती दिखाई देती हैं। प्लाज्मा की पहचान सबसे पहले एक क्रूक्स नली में १८७९ मे सर विलियम क्रूक्स द्वारा की गई थी उन्होंने इसे “चमकते पदार्थ” का नाम दिया था। क्रूक्स नली की प्रकृति "कैथोड रे" की पहचान इसके बाद ब्रिटिश भौतिक विज्ञानी सर जे जे थॉमसन द्वारा १८९७ में द्वारा की गयी। १९२८ में इरविंग लैंगम्युइर ने इसे प्लाज्मा नाम दिया, शायद इसने उन्हें रक्त प्लाविका (प्लाज्मा) की याद दिलाई थी। .

नई!!: इलेक्ट्रॉन और प्लाज़्मा (भौतिकी) · और देखें »

पॉजि़ट्रान उत्सर्जन टोमोग्राफी

एक आम पॉज़िट्रॉन उत्सर्जन टोमोग्राफी (PET) सुविधा की छवि PET/CT-सिस्टम 16-स्लाइस CT के साथ; छत पर लगा हुआ उपकरण CT विपरीत एजेंट के लिए एक इंजेक्शन पंप है पॉज़िट्रॉन उत्सर्जन टोमोग्राफी (पीईटी (PET)) एक ऐसी परमाणु चिकित्सा इमेजिंग तकनीक है जो शरीर की कार्यात्मक प्रक्रियाओं की त्रि-आयामी छवि या चित्र उत्पन्न करती है। यह प्रणाली एक पॉज़िट्रॉन-उत्सर्जित रेडिओन्युक्लिआइड (अनुरेखक) द्वारा अप्रत्यक्ष रूप से उत्सर्जित गामा किरणों के जोड़े का पता लगाती है, जिसे शरीर में एक जैविक रूप से सक्रिय अणु पर प्रवेश कराया जाता है। इसके बाद शरीर के भीतर 3-आयामी या 4-आयामी (चौथा आयाम समय है) स्थान में अनुरेखक संकेन्द्रण के चित्रों को कंप्यूटर विश्लेषण द्वारा पुनर्निर्मित किया जाता है। आधुनिक स्कैनरों में, यह पुनर्निर्माण प्रायः मरीज पर किए गए सिटी एक्स-रे (CT X-ray) की सहायता से उसी सत्र के दौरान, उसी मशीन में किया जाता है। यदि PET के किए चुना गया जैविक रूप से सक्रिय अणु एक ग्लूकोज सम्बंधी FDG है, तब अनुरेखक की संकेन्द्रण की छवि, स्थानिक ग्लूकोज़ उद्ग्रहण के रूप में ऊतक चयापचय गतिविधि प्रदान करती है। हालांकि इस अनुरेखक का उपयोग सबसे आम प्रकार के PET स्कैन को परिणामित करता है, PET में अन्य अनुरेखक अणुओं के उपयोग से कई अन्य प्रकार के आवश्यक अणुओं के ऊतक संकेन्द्रण की छवि ली जाती है। .

नई!!: इलेक्ट्रॉन और पॉजि़ट्रान उत्सर्जन टोमोग्राफी · और देखें »

फर्मी अन्योन्यक्रिया

कण भौतिकी में, फर्मी अन्योन्यक्रिया (Fermi's interaction) (जिसे बीटा क्षय का फर्मी सिद्धांत भी कहा जाता है) 1933 में एन्रीको फर्मी द्वारा प्रस्तावित बीटा क्षय की व्याख्या है। इस सिद्धान्त के अनुसार चार फर्मीऑन एक ही शीर्ष पर एक साथ अन्योन्य क्रिया करते हैं। उदाहरण के लिए, इस अन्योन्य क्रिया में न्यूट्रॉन का क्षय, न्यूट्रॉन के निम्न कणों से सीधे संयुग्मन में दर्शाया गया है.

नई!!: इलेक्ट्रॉन और फर्मी अन्योन्यक्रिया · और देखें »

फ़ोस्फ़र

फ़ोस्फ़र (phosphor) ऐसे पदार्थ को कहा जाता है जिसमें संदीप्ति (luminescence) का गुण हो, यानि विद्युत, तापमान, प्रकाश, इलेक्ट्रान या अन्य किसी तरह से उत्तेजित होने पर वह प्रकाश की किरणें छोड़े। बहुत से फ़ोस्फ़री पदार्थ उत्तेजित होने पर कुछ समय के लिये प्रज्वलित रहते हैं इसलिये उनका प्रयोग कैथोड किरण नलिका (सी आर टी) और प्रकाश उत्सर्जक डायोड (एल ई डी) जैसी उपयोगी चीज़ों में बहुत किया जाता है। .

नई!!: इलेक्ट्रॉन और फ़ोस्फ़र · और देखें »

फैराडे का विद्युत अपघटन का नियम

सन् १८३४ में फैराडे ने विद्युतरसायन से सम्बन्धित अपने कुछ संख्यात्मक प्रेक्षणों को प्रकाशित किया। इन्हें फैराडे के विद्युत अपघटन के नियम (Faraday's laws of electrolysis) कहते हैं। इसके अन्तर्गत दो नियम हैं। पाठ्यपुस्तकों और वैज्ञानिक साहित्य में में इन नियमों को अलग-अलग तरीके से प्रस्तुत किया जाता है लेकिन वहुधा प्रचलित रूप कुछ इस प्रकार है-; फैराडे का विद्युत अपघटन का प्रथम नियम विद्युत अपघटन में विद्युताग्रों (एलेक्ट्रोड्स) पर जमा हुए पदार्थ की मात्रा धारा की मात्रा समानुपाती होती है। 'धारा की मात्रा' का अर्थ आवेश से है न कि विद्युत धारा से।; फैराडे का विद्युत अपघटन का द्वितीय नियम 'धारा की मात्रा' समान होने पर विद्युताग्रों पर जमा/हटाये गये पदार्थ की मात्रा उस तत्व के तुल्यांकी भार के समानुपाती होती है। (किसी पदार्थ का तुल्यांकी भार उसके मोलर द्रव्यमान को एक पूर्णांक से भाग देने पर मिलता है। यह पूर्णांक इस बात पर निर्भर करता है कि वह पदार्थ किस तरह की रासायनिक अभिक्रिया करता है।) .

नई!!: इलेक्ट्रॉन और फैराडे का विद्युत अपघटन का नियम · और देखें »

ब्रह्माण्ड किरण

ब्रह्माण्डीय किरण का उर्जा-स्पेक्ट्रम ब्रह्माण्ड किरणें (cosmic ray) अत्यधिक उर्जा वाले कण हैं जो बाहरी अंतरिक्ष में पैदा होते हैं और छिटक कर पृथ्वी पर आ जाते हैं। लगभग ९०% ब्रह्माण्ड किरण (कण) प्रोटॉन होते हैं; लगभग १०% हिलियम के नाभिक होते हैं; तथा १% से कम ही भारी तत्व तथा इलेक्ट्रॉन (बीटा मिनस कण) होते हैं। वस्तुत: इनको "किरण" कहना ठीक नहीं है क्योंकि धरती पर पहुँचने वाले ब्रह्माण्डीय कण अकेले होते हैं न कि किसी पुंज या किरण के रूप में। .

नई!!: इलेक्ट्रॉन और ब्रह्माण्ड किरण · और देखें »

बैण्ड विस्तारण

जब किसी पदार्थ को विद्युत् या ऊष्मा शक्ति देकर उत्तेजित किया जाता है तब उससे विभिन्न वर्ण की रश्मियाँ (radiations) निकलने लगती हैं। स्पेक्ट्रोग्राफ की सहायता से इनका स्पेक्ट्रम प्राप्त किया जा सकता है। यदि पदार्थ को इतनी ऊर्जा दी जाए कि उसके अणु उत्तेजित हो जाएँ, किंतु वे टूटकर परमाणुओं में परिवर्तित न हों, तो उनसे उत्सर्जित रश्मियों के स्पेक्ट्रम में विभिन्न वर्ण की छोटी-छोटी पट्टियाँ, या बैंड, पाए जाते हैं। ऐसे स्पेक्ट्रम को बैंड स्पेक्ट्रम (Band Spectrum) कहते हैं। यदि पदार्थ को बहुत अधिक ऊर्जा दी जाए तो अणु टूट जाते हैं और पदार्थ के परमाणु उत्तेजित हो जाते हैं। उत्तेजित परमाणुओं से जो स्पेक्ट्रम प्राप्त होता है, उसमें विभिन्न वर्ण की रेखाएँ पाई जाती हैं। यह स्पेक्ट्रम बैंड स्पेक्ट्रम से सर्वथा भिन्न होता है। .

नई!!: इलेक्ट्रॉन और बैण्ड विस्तारण · और देखें »

बेरिऑन संख्या

कण भौतिकी में बेरिऑन संख्या निकाय की लगभग संरक्षित क्वान्टम संख्या है। जहाँ nq क्वार्क की एक संख्या है और n प्रतिक्वार्क की एक संख्या है। बेरिऑनों (तीन क्वार्क) की बेरिऑन संख्या +1, मेसॉनों (एक क्वार्क, एक प्रतिक्वार्क) की बेरिऑन संख्या 0 (शून्य) और प्रतिबेरिऑनों (तीन प्रतिक्वार्क) की बेरिऑन संख्या −1 होती है। इतर हैड्रॉन जैसे पेन्टाक्वार्क (चार क्वार्क, एक प्रति क्वार्क) और चतुष्क्वार्क (दो क्वार्क, दो प्रतिक्वार्क) को भी उनकी बेरिऑन संख्या के आधार पर बेरिऑनों एवं मेसॉनों के रूप में वर्गीकृत किया जाता है। .

नई!!: इलेक्ट्रॉन और बेरिऑन संख्या · और देखें »

बोर त्रिज्या

बोर त्रिज्या (Bohr radius) एक भौतिक नियतांक है जो अपनी सब से कम ऊर्जा वाली अवस्था में किसी हाइड्रोजन परमाणु में उसके नाभिक (न्यूक्लियस) और उसके इकलौते इलेक्ट्रॉन में होती है। इसका नाम प्रसिद्ध भौतिकविज्ञानी नील्स बोर (Niels Bohr) पर रखा गया था। इसका चिह्न a0 है और इसका माप लगभग ५.३ × १०-११ मीटर है।, Lawrence S. Lerner, Jones & Bartlett Learning, 1996, ISBN 978-0-86720-487-2,...

नई!!: इलेक्ट्रॉन और बोर त्रिज्या · और देखें »

बीटा कण

'''β−''' (बीटा माइनस) क्षय अलफा, बीटा तथा गामा किरणों की भेदन-क्षमता की तुलना कुछ रेडियोसक्रिय नाभिकों (जैसे, पोटैशियम-40) से उत्सर्जित होने वाले उच्च-ऊर्जा तथा उच्च-वेग वाले इलेक्ट्रॉन या पॉजिट्रॉनों को बीटा कण (Beta particles) कहते हैं। ये एक प्रकार के आयनकारी विकिरण हैं। इन्हें 'बीटा किरण' भी कहते हैं। रेडियोसक्रिय नाभिक से बीटा कणों का निकलना 'बीटा-क्षय' (beta decay) कहा जाता है। बीटा कणों को ग्रीक-वर्ण बीटा (β) द्वारा निरूपित किया जाता है। बीता-क्षय दो प्रकार का होता है, β− तथा β+, जिसमें क्रमशः इलेक्ट्रॉन और पॉजिट्रॉन निकलते हैं। श्रेणी:रेडियोसक्रियता श्रेणी:विकिरण.

नई!!: इलेक्ट्रॉन और बीटा कण · और देखें »

बीटाट्रॉन

वर्ष १९४२ में जर्मनी में विकसित एक बीटाट्रॉन (6 MeV) बीटाट्रॉन (betatron) एक प्रकार का चक्रीय कण त्वरक है। इसका विकास नार्वे के वैज्ञानिक रोल्फ विडरो ने किया था। बीटाट्रॉन को एक ट्रान्सफॉर्मर माना जा सकता है जिसकी सेकेण्डरी एक टर्न वाली निर्वात पाइप होती है जिसके अन्दर इलेक्ट्रॉन चक्कर करते हुए त्वरित होते हैं। ट्रान्सफॉर्मर की प्राइमरी में प्रत्यावर्ती धारा प्रवाहित करने पर निर्वात पाइप में चक्कर कर रहे इलेक्ट्रॉन त्वरित होते हैं। बीटाट्रॉन मशीन पहली मशीन थी जिसके द्वारा साधारण इलेक्ट्रॉन गन से प्राप्त होने वाले इलेक्ट्रानों की अपेक्षा अधिक ऊर्जा वाले इलेक्ट्रॉन प्राप्त किये जा सके। श्रेणी:कण त्वरक.

नई!!: इलेक्ट्रॉन और बीटाट्रॉन · और देखें »

भौतिक विज्ञान की पारिभाषिक शब्दावली

(abscissa) किसी ग्राफ पर किसी बिन्दु की Y-अक्ष से लम्बवत दूरी; इसे X-निर्देशांक भी कहते हैं। प्रति-कण (antiparticle) A counterpart of a subatomic particle having opposite properties (except for equal mass)। द्वारक (aperture) Any opening through which radiation may pass.

नई!!: इलेक्ट्रॉन और भौतिक विज्ञान की पारिभाषिक शब्दावली · और देखें »

भौतिक विज्ञानी

अल्बर्ट आइंस्टीन, जिन्होने सामान्य आपेक्षिकता का सिद्धान्त दिया भौतिक विज्ञानी अथवा भौतिक शास्त्री अथवा भौतिकीविद् वो वैज्ञानिक कहलाते हैं जो अपना शोध कार्य भौतिक विज्ञान के क्षेत्र में करते हैं। उप-परवमाणविक कणों (कण भौतिकी) से लेकर सम्पूर्ण ब्रह्माण्ड तक सभी परिघटनाओं का अध्ययन करने वाले लोग इस श्रेणी में माने जाते हैं। .

नई!!: इलेक्ट्रॉन और भौतिक विज्ञानी · और देखें »

भौतिकी के मूलभूत सिद्धान्तों के खोज का इतिहास

प्रकाश वैद्युत प्रभाव, आइंस्टाइन ब्राउनी गति, आइंस्टाइन नाभिक की खोज अतिचालकता द्रव्य तरंगें (Matter waves) मंदाकिनी Galaxies फोटॉनों के कण-प्रकृति की पुष्टि न्यूट्रॉन की खोज तारों में ऊर्जा-उत्पादन की प्रक्रिया समझी गई म्यूआन न्यूट्रिनो पाया गया सौर न्यूट्रिनो प्रश्न (problem) मिला पल्सर (Pulsars या neutron stars) की खोज चार्म्ड क्वार्क (Charmed quark) का पता चला श्रेणी:भौतिकी श्रेणी:इतिहास ru:Хронология открытий человечества.

नई!!: इलेक्ट्रॉन और भौतिकी के मूलभूत सिद्धान्तों के खोज का इतिहास · और देखें »

म्यूऑन

म्यूऑन एक मूलभूत कण है। इसका प्रतीक चिह्न &muon; है। इसका आवेश इकाई (e) होता है अर्थात इलेक्ट्रॉन के समान होता है। विद्युतणु की भाँति यह कण भी लेप्टॉनों की श्रेणी में आता है। इसका द्रव्यमान 105.7 Mev/c2 है। इसका प्रचक्रण 1/2 होता है। आवेश के कारण यह दो फ्लेवर के साथ पाया जाता है जो एक दूसरे के प्रतिकण होते हैं अर्थात म्यूऑन एवं प्रतिम्यूऑन। म्यूऑन लेप्टॉन श्रेणी में आता है अतः यह दुर्बल अन्योन्य क्रिया में भाग लेता है। चूँकि यह एक आवेशित कण है अतः विद्युत चुम्बकीय अन्योन्य क्रियाओं में भी भाग लेता है। .

नई!!: इलेक्ट्रॉन और म्यूऑन · और देखें »

यंग्स डबल स्लिट परीक्षण

यंग्स डबल स्लिट परीक्षण, आधूनिक डबल स्लिट परीक्षण का मूल रूप है। यह प्रयोग '''थोमस यंग''' के द्वारा १९ वीं शताब्दी मे प्रदर्शित किया गया था। इस प्रयोग ने प्रकाश की तरंग सिद्धांत की स्वीकृति में एक प्रमुख भूमिका निभाई है। खुद थोमस यंग का कहना था कि यह उनकी सभी उपलब्धियों मे से अत्यंत महत्वपूर्ण सिद्धि है। .

नई!!: इलेक्ट्रॉन और यंग्स डबल स्लिट परीक्षण · और देखें »

रेडियोसक्रियता

अल्फा, बीटा और गामा विकिरण की भेदन क्षमता अलग-अलग होती है। रेडियोसक्रियता (रेडियोऐक्टिविटी / radioactivity) या रेडियोधर्मिता वह प्रकिया होती है जिसमें एक अस्थिर परमाणु अपने नाभिक (न्यूक्लियस) से आयनकारी विकिरण (ionizing radiation) के रूप में ऊर्जा फेंकता है। ऐसे पदार्थ जो स्वयं ही ऐसी ऊर्जा निकालते हों विकिरणशील या रेडियोधर्मी कहलाते हैं। यह विकिरण अल्फा कण (alpha particles), बीटा कण (beta particle), गामा किरण (gamma rays) और इलेक्ट्रॉनों के रूप में होती है। ऐसे पदार्थ जिनकी परमाण्विक नाभी स्थिर नहीं होती और जो निश्चित मात्रा में आवेशित कणों को छोड़ते हैं, रेडियोधर्मी (रेडियोऐक्टिव) कहलाते हैं। .

नई!!: इलेक्ट्रॉन और रेडियोसक्रियता · और देखें »

रेडॉक्स

रेडॉक्स (Redox; 'Reduction and Oxidation' का लघुकृत रूप) अभिक्रियाएँ के अन्तर्गत वे सब रासायनिक अभिक्रियाएँ सम्मिलित हैं जिनमें परमाणुओं के आक्सीकरण अवस्थाएँ बदल जातीं हैं। सामान्यतः रेडॉक्स अभिक्रियाओं के अभिकारकों के परमाणुओं के बीच इलेक्ट्रानों का आदान-प्रदान होता है। कभी भी आक्सीकरण या अपचयन अभिक्रिया अकेले नहीं होती। दोनो साथ-साथ होतीं हैं। एक ही अभिक्रिया में यदि किसी चीज का आक्सीकरण होता है तो किसी दूसरी का अपचयन होता है। इसीलिये इनका अलग-अलग अध्ययन न करके एकसाथ अध्ययन करने हैं और दोनों को मिलाकर 'रेडॉक्स' कहते हैं। .

नई!!: इलेक्ट्रॉन और रेडॉक्स · और देखें »

लुई द ब्रॉई

लुई द ब्रॉई लुई द ब्रॉई (फ़्रांसिसी: Louis de Broglie, जन्म: १५ अगस्त १८९२, देहांत: १९ मार्च १९८७) एक फ़्रांसिसी भौतिकी वैज्ञानिक और नोबेल पुरस्कार विजेता थे। उन्होंने १९२४ में सारे पदार्थों के तरंग-कण द्विरूप होने का दावा किया था और उसके लिए गणित विकसित किया था। यह भविष्यवाणी आगे चलकर प्रयोगों में सिद्ध हो गयी। इनके नाम को भारतीय उपमहाद्वीप में अक्सर "लुई दि ब्रॉग्ली" उच्चारित किया जाता है, जो वास्तव में सही उच्चारण नहीं है। .

नई!!: इलेक्ट्रॉन और लुई द ब्रॉई · और देखें »

लेप्टॉन संख्या

लेप्टॉन संख्या कण भौतिकी में लेप्टॉन संख्या लेप्टॉन में से प्रतिलेप्टॉनों की संख्या को घटाने अर प्ताप्त संख्या है। समीकरण रूप में, इस प्रकार सभी लेप्टॉनों को +1 आवंटित किया जाता है, सभी प्रतिलेप्टॉनों को −1 और जो लेप्टॉन नहीं हैं उनकी लेप्टॉन संख्या 0 मानी जाती है। लेप्टॉन संख्या (कभी-कभी लेप्टॉन आवेश भी कहा जाता है) एक योगज क्वांटम संख्या है, अर्थात किसी भी अन्योन्य क्रिया में कुल लेप्टॉन संख्या संरक्षित रहती है। लेप्टॉनीय संख्या की तुलना में, लेप्टॉनिक परिवार संख्या भी परिभाषित की जाती है.

नई!!: इलेक्ट्रॉन और लेप्टॉन संख्या · और देखें »

सफ़ेद बौना

तुलनात्मक तस्वीर: हमारा सूरज (दाएँ तरफ़) और पर्णिन अश्व तारामंडल में स्थित द्वितारा "आई॰के॰ पॅगासाई" के दो तारे - "आई॰के॰ पॅगासाई ए" (बाएँ तरफ़) और सफ़ेद बौना "आई॰के॰ पॅगासाई बी" (नीचे का छोटा-सा बिंदु)। इस सफ़ेद बौने का सतही तापमान ३,५०० कैल्विन है। खगोलशास्त्र में सफ़ेद बौना या व्हाइट ड्वार्फ़ एक छोटे तारे को बोला जाता है जो "अपकृष्ट इलेक्ट्रॉन पदार्थ" का बना हो। "अपकृष्ट इलेक्ट्रॉन पदार्थ" या "ऍलॅक्ट्रॉन डिजॅनरेट मैटर" में इलेक्ट्रॉन अपने परमाणुओं से अलग होकर एक गैस की तरह फैल जाते हैं और नाभिक (न्युक्लिअस, परमाणुओं के घना केंद्रीय हिस्से) उसमें तैरते हैं। सफ़ेद बौने बहुत घने होते हैं - वे पृथ्वी के जितने छोटे आकार में सूरज के जितना द्रव्यमान (मास) रख सकते हैं। माना जाता है के जिन तारों में इतना द्रव्यमान नहीं होता के वे आगे चलकर अपना इंधन ख़त्म हो जाने पर न्यूट्रॉन तारा बन सकें, वे सारे सफ़ेद बौने बन जाते हैं। इस नज़रिए से आकाशगंगा (हमारी गैलेक्सी) के ९७% तारों के भाग्य में सफ़ेद बौना बन जाना ही लिखा है। सफ़ेद बौनों की रौशनी बड़ी मध्यम होती है। वक़्त के साथ-साथ सफ़ेद बौने ठन्डे पड़ते जाते हैं और वैज्ञानिकों की सोच है के अरबों साल में अंत में जाकर वे बिना किसी रौशनी और गरमी वाले काले बौने बन जाते हैं। क्योंकि हमारा ब्रह्माण्ड केवल १३.७ अरब साल पुराना है इसलिए अभी इतना समय ही नहीं गुज़रा के कोई भी सफ़ेद बौना पूरी तरह ठंडा पड़कर काला बौना बन सके। इस वजह से आज तक खगोलशास्त्रियों को कभी भी कोई काला बौना नहीं मिला है। .

नई!!: इलेक्ट्रॉन और सफ़ेद बौना · और देखें »

समस्थानिक

समस्थानिक (फ्रेंच, अंग्रेज़ी: Isotope, जर्मन: Isotop, पुर्तगाली, स्पेनिश: Isótopo) एक ही तत्व के परमाणु जिनकी परमाणु संख्या समान होती हैं, परन्तु भार अलग-अलग होता है, उन्हें समस्थानिक कहा जाता है। इनमें प्रत्येक परमाणु में समान प्रोटोन होते हैं। जबकि न्यूट्रॉन की संख्या अलग अलग रहती है। इस कारण परमाणु संख्या तो समान रहती है, लेकिन परमाणु का द्रव्यमान अलग अलग हो जाता है। समस्थानिक का अर्थ "समान स्थान" से है। आवर्त सारणी में तत्वों को परमाणु संख्या के आधार पर अलग अलग रखा जाता है, जबकि समस्थानिक में परमाणु संख्या के समान रहने के कारण उन्हें अलग नहीं किया गया है, इस कारण इन्हें समस्थानिक कहा जाता है। परमाणु के नाभिक के भीतर प्रोटोन की संख्या को परमाणु संख्या कहा जाता है, जो बिना आयन वाले परमाणु के इलेक्ट्रॉन के बराबर होते हैं। प्रत्येक परमाणु संख्या किसी विशिष्ट तत्व की पहचान बताता है, लेकिन ऐसा समस्थानिक में नहीं होता है। इसमें किसी तत्व के परमाणु में न्यूट्रॉन की संख्या विस्तृत हो सकती है। प्रोटोन और न्यूट्रॉन की संख्या उस परमाणु का द्रव्यमान संख्या होता है और प्रत्येक समस्थानिक में द्रव्यमान संख्या अलग अलग होता है। उदाहरण के लिए, कार्बन के तीन समस्थानिक कार्बन-12, कार्बन-13 और कार्बन-14 हैं। इनमें सभी का द्रव्यमान संख्या क्रमशः 12, 13 और 14 है। कार्बन में 6 परमाणु होता है, जिसका मतलब है कि कार्बन के सभी परमाणु में 6 प्रोटोन होते हैं और न्यूट्रॉन की संख्या क्रमशः 6, 7 और आठ है। .

नई!!: इलेक्ट्रॉन और समस्थानिक · और देखें »

सिन्क्रोट्रॉन प्रकाश स्रोत

पेरिस स्थित '''SOLEIL''' (सूर्य) नामक सिन्क्रोट्रॉन प्रकाश स्रोत का योजनामूलक चित्र सिन्क्रोट्रॉन प्रकाश स्रोत (synchrotron light source) वह मशीन है जो वैज्ञानिक तथा तकनीकी उद्देश्यों के लिये विद्युतचुम्बकीय विकिरण (जैसे एक्स-किरण, दृष्य प्रकाश आदि) उत्पन्न करती है। यह प्रायः एक भण्डारण वलय (स्टोरेज रिंग) के रूप में होती है। सिन्क्रोट्रॉन प्रकाश सबसे पहले सिन्क्रोट्रॉन में देखी गयी थी। आजकल सिन्क्रोट्रॉन प्रकाश, भण्डारण वलयों तथा विशेष प्रकार के अन्य कण त्वरकों द्वारा उत्पन्न की जाती है। सिन्क्रोट्रॉन प्रकाश प्रायः इलेक्ट्रॉन को त्वरित करके प्राप्त की जाती है। इसके लिये पहले उच्च ऊर्जा की इलेक्ट्रॉन पुंज पैदा की जाती है। इस इलेक्ट्रॉन किरण-पुंज को एक द्विध्रुव चुम्बक के चुम्बकीय क्षेत्र से गुजारा जाता है जिसका चुम्बकीय क्षेत्र इलेक्ट्रानों की गति की दिशा के लम्बवत होता है। इससे इलेक्ट्रानों पर उनकी गति की दिशा (तथा चुम्बकीय क्षेत्र) के लम्बवत बल लगता है जिससे वे सरल रेखा के बजाय वृत्तिय पथ पर गति करने लगते हैं। (दूसरे शब्दों में, इनका त्वरण होता है।)। इसी त्वरण के फलस्वरूप सिन्क्रोट्रॉन प्रकाश उत्पन्न होता है जो अनेक प्रकार से उपयोगी है। चुम्बकीय द्विध्रुव के अलावा, अनडुलेटर, विगलर तथा मुक्त इलेक्ट्रॉन लेजर द्वारा भी सिन्क्रोट्रॉन प्रकाश पैदा किया जाता है। .

नई!!: इलेक्ट्रॉन और सिन्क्रोट्रॉन प्रकाश स्रोत · और देखें »

संक्रमण धातु

परमाणु संख्या २१ से ३०, ३९ से ४८, ५७ से ८० और ८९ से ११२ वाले रासायनिक तत्त्व संक्रमण तत्व (transition elements/ट्राँज़िशन एलिमेंट्स) कहलाते हैं। चूँकि ये सभी तत्त्व धातुएँ हैं, इसलिये इनको संक्रमण धातु भी कहते हैं। इनका यह नाम आवर्त सारणी में उनके स्थान के कारण पड़ा है क्योंकि प्रत्येक पिरियड में इन तत्त्वों के d ऑर्बिटल में इलेक्ट्रान भरते हैं और 'संक्रमण' होता है। आईयूपीएसी (IUPAC) ने इनकी परिभाषा यह दी है- वे तत्त्व जिनका d उपकक्षा अंशतः भरी हो। इस परिभाषा के अनुसार, जस्ता समूह के तत्त्व संक्रमण तत्त्व नहीं हैं क्योंकि उनकी संरचना d10 है। .

नई!!: इलेक्ट्रॉन और संक्रमण धातु · और देखें »

स्ट्रिंग सिद्धांत

स्ट्रिंग सिध्दांत कण भौतिकी का एक सक्रीय शोध क्षेत्र है जो प्रमात्रा यान्त्रिकी और सामान्य सापेक्षता में सामजस्य स्थपित करने का प्रयास करता है। इसे सर्वतत्व सिद्धांत का प्रतियोगी सिद्धान्त भी कहा जाता है, एक आत्मनिर्भर गणितीय प्रतिमान जो द्रव्य के रूप व सभी मूलभूत अन्योन्य क्रियाओं को समझाने में सक्षम है। स्ट्रिंग सिद्धांत के अनुसार परमाणु में स्थित मूलभूत कण (इलेक्ट्रॉन, क्वार्क आदि) बिन्दु कण नहीं हैं अर्थात इनकी विमा शून्य नहीं है बल्कि एक विमिय दोलक रेखाएं हैं (स्ट्रिंग अथवा रजु)। .

नई!!: इलेक्ट्रॉन और स्ट्रिंग सिद्धांत · और देखें »

सौर पवन

प्लाज़्मा हेलियोपॉज़ से संगम करते हुए सौर वायु (अंग्रेज़ी:सोलर विंड) सूर्य से बाहर वेग से आने वाले आवेशित कणों या प्लाज़्मा की बौछार को नाम दिया गया है। ये कण अंतरिक्ष में चारों दिशाओं में फैलते जाते हैं।। हिन्दुस्तान लाइव। २७ नवम्बर २००९ इन कणों में मुख्यतः प्रोटोन्स और इलेक्ट्रॉन (संयुक्त रूप से प्लाज़्मा) से बने होते हैं जिनकी ऊर्जा लगभग एक किलो इलेक्ट्रॉन वोल्ट (के.ई.वी) हो सकती है। फिर भी सौर वायु प्रायः अधिक हानिकारक या घातक नहीं होती है। यह लगभग १०० ई.यू (खगोलीय इकाई) के बराबर दूरी तक पहुंचती हैं। खगोलीय इकाई यानि यानि एस्ट्रोनॉमिकल यूनिट्स, जो पृथ्वी से सूर्य के बीच की दूरी के बराबर परिमाण होता है। १०० ई.यू की यह दूरी सूर्य से वरुण ग्रह के समान है जहां जाकर यह अंतरतारकीय माध्यम (इंटरस्टेलर मीडियम) से टकराती हैं। अमेरिका के सैन अंटोनियो स्थित साउथ वेस्ट रिसर्च इंस्टिट्यूट के कार्यपालक निदेशक डेव मैक्कोमास के अनुसार सूर्य से लाखों मील प्रति घंटे के वेग से चलने वाली ये वायु सौरमंडल के आसपास एक सुरक्षात्मक बुलबुला निर्माण करती हैं। इसे हेलियोस्फीयर कहा जाता है। यह पृथ्वी के वातावरण के साथ-साथ सौर मंडल की सीमा के भीतर की दशाओं को तय करती हैं।। नवभारत टाइम्स। २४ सितंबर २००८ हेलियोस्फीयर में सौर वायु सबसे गहरी होती है। पिछले ५० वर्षों में सौर वायु इस समय सबसे कमजोर पड़ गई हैं। वैसे सौर वायु की सक्रियता समय-समय पर कम या अधिक होती रहती है। यह एक सामान्य प्रक्रिया है। .

नई!!: इलेक्ट्रॉन और सौर पवन · और देखें »

सौर सेल

मोनोक्रिस्टलाइन सिलिकॉन वैफ़र से बना सौर सेल सौर बैटरी या सौर सेल फोटोवोल्टाइक प्रभाव के द्वारा सूर्य या प्रकाश के किसी अन्य स्रोत से ऊर्जा प्राप्त करता है। अधिकांश उपकरणों के साथ सौर बैटरी इस तरह से जोड़ी जाती है कि वह उस उपकरण का हिस्सा ही बन जाती जाती है और उससे अलग नहीं की जा सकती। सूर्य की रोशनी से एक या दो घंटे में यह पूरी तरह चार्ज हो जाती है। सौर बैटरी में लगे सेल प्रकाश को समाहित कर अर्धचालकों के इलेक्ट्रॉन को उस धातु के साथ क्रिया करने को प्रेरित करता है।। हिन्दुस्तान लाइव। ३१ मार्च २०१० एक बार यह क्रिया होने के बाद इलेक्ट्रॉन में उपस्थित ऊर्जा या तो बैटरी में भंडार हो जाती है या फिर सीधे प्रयोग में आती है। ऊर्जा के भंडारण होने के बाद सौर बैटरी अपने निश्चित समय पर डिस्चार्ज होती है। ये उपकरण में लगे हुए स्वचालित तरीके से पुनः चालू होती है, या उसे कोई व्यक्ति ऑन करता है। सौर सेल का चिह्न एक परिकलक में लगे सौर सेल अधिकांशतः जस्ता-अम्लीय (लेड एसिड) और निकल कैडमियम सौर बैटरियां प्रयोग होती हैं। लेड एसिड बैटरियों की कुछ सीमाएं होती हैं, जैसे कि वह पूरी तरह चार्ज नहीं हो पातीं, जबकि इसके विपरीत निकल कैडिमयम बैटरियों में यह कमी नहीं होती, लेकिन ये अपेक्षाकृत भी होती हैं। सौर बैटरियों को वैकल्पिक ऊर्जा स्रोत के रूप में भी प्रयोग करने हेतु भी गौर किया जा रहा है। अभी तक, इन्हें केवल छोटे इलैक्ट्रॉनिक उपकरणों में प्रयोगनीय समझा जा रहा है। पूरे घर को सौर बैटरी से चलाना चाहे संभव हो, लेकिन इसके लिए कई सौर बैटरियों की आवश्यकता होगी। इसकी विधियां तो उपलब्ध हैं, लेकिन यह अधिकांश लोगों के लिए अत्यधिक महंगा पड़ेगा। बहुत से सौर सेलों को मिलाकर (आवश्यकतानुसार श्रेणीक्रम या समानान्तरक्रम में जोड़कर) सौर पैनल, सौर मॉड्यूल, एवं सौर अर्रे बनाये जाते हैं। सौर सेलों द्वारा जनित उर्जा, सौर उर्जा का एक उदाहरण है। .

नई!!: इलेक्ट्रॉन और सौर सेल · और देखें »

सूक्ष्मदर्शन

परागकणों का स्कैनिंग इलेक्ट्रॉन सूक्ष्मदर्शी द्वारा प्राप्त चित्र सूक्ष्मदर्शिकी या सूक्ष्मदर्शन (अंग्रेज़ी:माइक्रोस्कोपी) विज्ञान की एक शाखा होती है, जिसमें सूक्ष्म व अतिसूक्ष्म जीवों को बड़ा कर देखने में सक्षम होते हैं, जिन्हें साधारण आंखों से देखना संभव नहीं होता है। इसका मुख्य उद्देश्य सूक्ष्मजीव संसार का अध्ययन करना होता है। इसमें प्रकाश के परावर्तन, अपवर्तन, विवर्तन और विद्युतचुम्बकीय विकिरण का प्रयोग होता है। विज्ञान की इस शाखा मुख्य प्रयोग जीव विज्ञान में किया जाता है। विश्व भर में रोगों के नियंत्रण और नई औषधियों की खोज के लिए माइक्रोस्कोपी का सहारा लिया जाता है।|हिन्दुस्तान लाइव। ९ जून २०१० सूक्ष्मदर्शन की तीन प्रचलित शाखाओं में ऑप्टिकल, इलेक्ट्रॉन एवं स्कैनिंग प्रोब सूक्ष्मदर्शन आते हैं। ---- एक स्टीरियो सूक्ष्मदर्शी माइक्रोस्कोपी विषय का आरंभ १७वीं शताब्दी के आरंभ में हुआ माना जाता है। इसी समय जब वैज्ञानिकों और अभियांत्रिकों ने भौतिकी में लेंस की खोज की थी। लेंस के आविष्कार के बाद वस्तुओं को उनके मूल आकार से बड़ा कर देखना संभव हो पाया। इससे पानी में पाए जाने वाले छोटे और अन्य अति सूक्ष्म जंतुओं की गतिविधियों के दर्शन सुलभ हुए और वैज्ञानिकों को उनके बारे में नये तथ्यों का ज्ञान हुआ। इसके बाद ही वैज्ञानिकों को यह भी ज्ञात हुआ कि प्राणी जगत के बारे में अपार संसार उनकी प्रतीक्षा में है व उनका ज्ञान अब तक कितना कम था। माइक्रोस्कोपी की शाखा के रूप में दृष्टि संबंधी सूक्ष्मदर्शन (ऑप्टिकल माइक्रोस्कोपी) का जन्म सबसे पहले माना जाता है। इसे प्रकाश सूक्ष्मदर्शन (लाइट माइक्रोस्कोपी) भी कहा जाता है। जीव-जंतुओं के अंगों को देखने के लिए इसका प्रयोग होता है। प्रकाश सूक्ष्मदर्शी (ऑप्टिकल माइक्रोस्कोप) अपेक्षाकृत महंगे किन्तु बेहतर उपकरण होते हैं। सूक्ष्मदर्शन के क्षेत्र में इलेक्ट्रॉन सूक्ष्मदर्शी की खोज अत्यंत महत्वपूर्ण मील का पत्थर माना जाता है क्योंकि इसकी खोज के बाद वस्तुओं को उनके वास्तविक आकार से कई हजार गुना बड़ा करके देखना संभव हुआ था। इसकी खोज बीसवीं शताब्दी में हुई थी। हालांकि इलेक्ट्रॉन माइक्रोस्कोप अन्य सूक्ष्मदर्शियों से महंगा होता है और प्रयोगशाला में इसका प्रयोग करना छात्रों के लिए संभव नहीं होता, लेकिन इसके परिणाम काफी बेहतर होते हैं। इससे प्राप्त चित्र एकदम स्पष्ट होते हैं। सूक्ष्मदर्शन में एक अन्य तकनीक का प्रयोग होता है, जो इलेक्ट्रॉन सूक्ष्मदर्शन से भी बेहतर मानी जाती है। इसमें हाथ और सलाई के प्रयोग से वस्तु का कई कोणों से परीक्षण होता है। ग्राहम स्टेन ने इसी प्रक्रिया में सबसे पहले जीवाणु को देखा था। .

नई!!: इलेक्ट्रॉन और सूक्ष्मदर्शन · और देखें »

सेरेन्कोव विकिरण

सेरेन्कोव विकिरण (Cherenkov radiation, चेरेन्कोव विकिरण अथवा वाविलोव-सेरेन्कोव विकिरण) एक विद्युतचुम्बकीय विकिरण है जो तब उत्पन्न होता है जब कोई आवेशित कण (मुख्यतः इलेक्ट्रॉन) किसी पैराविद्युत-माध्यम में उस माध्यम में प्रकाश के फेज वेग से अधिक वेग से गति करे। जल के भीतर स्थित नाभिकीय रिएक्टर से निकलने वाला विशिष्ट नील चमक, सेरेन्कोव विकिरण के ही कारण होती है। इसका नाम सोवियत संघ के वैज्ञानिक तथा १९५८ के नोबेल पुरस्कार विजेता पावेल अलेकसेविच सेरेनकोव (Pavel Alekseyevich Cherenkov) के नाम पर रखा गया है जिन्होने इसे सबसे पहले प्रायोगिक रूप से खोजा (डिटेक्ट किया) था। इस प्रभाव का सैद्धान्तिक विवेचन बाद में विकसित हुआ जो आइन्सटाइन के विशिष्ट आपेक्षिकता सिद्धान्त पर आधारित था। सेरेन्कोव विकिरण के अस्तित्व की सैद्धान्तिक भविष्यवाणी ओलिवर हेविसाइड ने १८८८-८९ में किया था। .

नई!!: इलेक्ट्रॉन और सेरेन्कोव विकिरण · और देखें »

सेंटीमीटर-ग्राम-सैकिण्ड इकाई प्रणाली

। सेन्टीमीटर मापने का टेपसेंटीमीटर-ग्राम-सैकिण्ड इकाई प्रणाली (CGS) भौतिक इकाइयों के मापन की प्रणाली है। यह या~ंत्रिक इकाइयों हेतु सर्वदा समान है, पर्म्तु कई विद्युत इकाइयाँ जुडी़ हैं। इसका स्थान बाद में MKS इकाई प्रणाली ने ले लिया था, जिसमें मीटर, किलोग्राम सैकिण्ड प्रयोग होते थे,। वह भी बाद में अन्तर्राष्ट्रीय इकाई प्रणाली से बदली गयी। इस नयी प्रणाली में MKS प्रणाली की ही इकैयाँ थी, जिनके साथ साथ एम्पीयर, मोल, कैण्डेला और कैल्विन शामिल थे। .

नई!!: इलेक्ट्रॉन और सेंटीमीटर-ग्राम-सैकिण्ड इकाई प्रणाली · और देखें »

सीसा

विद्युत अपघटन द्वारा शुद्ध किया हुआ सीस; १ घन सेमी से घन के साथ (तुलना के लिए) सीस, सीसा या लेड (अंग्रेजी: Lead, संकेत: Pb लैटिन शब्द प्लंबम / Plumbum से) एक धातु एवं तत्त्व है। काटने पर यह नीलिमा लिए सफ़ेद होता है, लेकिन हवा का स्पर्श होने पर स्लेटी हो जाता है। इसे इमारतें बनाने, विद्युत कोषों, बंदूक की गोलियाँ और वजन बनाने में प्रयुक्त किया जाता है। यह सोल्डर में भी मौजूद होता है। यह सबसे घना स्थिर तत्त्व है। यह एक पोस्ट-ट्रांज़िशन धातु है। इसका परमाणु क्रमांक ८२, परमाणु भार २०७.२१, घनत्व ११.३६, गलनांक ३,२७.४ डिग्री सें., क्वथनांक १६२०डिग्री से.

नई!!: इलेक्ट्रॉन और सीसा · और देखें »

हाइड्राइड

रसायन शास्त्र में हाइड्राइड (Hydride) हाइड्रोजन तत्व का ऋणायन (ऋणात्मक/निगेटिव आवेश वाला आयन) होता है, जिसे रासायनिक सूत्र H− द्वारा दर्शाया जाता है। यह अक्सर धातु तत्वों के साथ बने हाइड्रोजन के रासायनिक यौगिकों (क्म्पाउंड) में पाए जाते है, क्योंकि वह हाइड्रोजन से अधिक विद्युत-घनात्मक (इलेक्ट्रोपोज़िटिव) होते हैं और उनके साथ यौगिक बनाते हुए हाइड्रोजन एक इलेक्ट्रोन ले लेता है और ऋणात्मक आवेश (चार्ज) का आयन बन जाता है। इसका एक उदाहरन बोरोन हाइड्राइड है। .

नई!!: इलेक्ट्रॉन और हाइड्राइड · और देखें »

हाइड्रोजन

हाइड्रोजन पानी का एक महत्वपूर्ण अंग है शुद्ध हाइड्रोजन से भरी गैस डिस्चार्ज ट्यूब हाइड्रोजन (उदजन) (अंग्रेज़ी:Hydrogen) एक रासायनिक तत्व है। यह आवर्त सारणी का सबसे पहला तत्व है जो सबसे हल्का भी है। ब्रह्मांड में (पृथ्वी पर नहीं) यह सबसे प्रचुर मात्रा में पाया जाता है। तारों तथा सूर्य का अधिकांश द्रव्यमान हाइड्रोजन से बना है। इसके एक परमाणु में एक प्रोट्रॉन, एक इलेक्ट्रॉन होता है। इस प्रकार यह सबसे सरल परमाणु भी है। प्रकृति में यह द्विआण्विक गैस के रूप में पाया जाता है जो वायुमण्डल के बाह्य परत का मुख्य संघटक है। हाल में इसको वाहनों के ईंधन के रूप में इस्तेमाल कर सकने के लिए शोध कार्य हो रहे हैं। यह एक गैसीय पदार्थ है जिसमें कोई गंध, स्वाद और रंग नहीं होता है। यह सबसे हल्का तत्व है (घनत्व 0.09 ग्राम प्रति लिटर)। इसकी परमाणु संख्या 1, संकेत (H) और परमाणु भार 1.008 है। यह आवर्त सारणी में प्रथम स्थान पर है। साधारणतया इससे दो परमाणु मिलकर एक अणु (H2) बनाते है। हाइड्रोजन बहुत निम्न ताप पर द्रव और ठोस होता है।।इण्डिया वॉटर पोर्टल।०८-३०-२०११।अभिगमन तिथि: १७-०६-२०१७ द्रव हाइड्रोजन - 253° से.

नई!!: इलेक्ट्रॉन और हाइड्रोजन · और देखें »

हाइड्रोजन परमाणु

हाइड्रोजन परमाणु रासायनिक तत्व हाइड्रोजन का एक परमाणु है। विद्युत तटस्थ परमाणु में एक सकारात्मक चार्ज प्रोटॉन होता है और एक एकल नकारात्मक आरोप लगाया इलेक्ट्रॉन जो कूल्ब बल द्वारा नाभिक के लिए बाध्य है। परमाणु हाइड्रोजन ब्रह्मांड के मूलभूत (बेरोनिक) द्रव्यमान का लगभग 75% है। पृथ्वी पर रोज़मर्रा की जिंदगी में, पृथक हाइड्रोजन परमाणु (आमतौर पर "परमाणु हाइड्रोजन" या अधिक सटीक, "मोनैटॉमिक हाइड्रोजन" कहा जाता है) अत्यंत दुर्लभ हैं। इसके बजाय, हाइड्रोजन यौगिकों में अन्य परमाणुओं के साथ संयोजित होता है, या स्वयं के साथ सामान्य (डायटोमिक) हाइड्रोजन गैस, एच 2 का निर्माण करता है। साधारण अंग्रेज़ी उपयोग में "परमाणु हाइड्रोजन" और "हाइड्रोजन परमाणु" अतिव्यापी है, फिर भी अलग, अर्थ। उदाहरण के लिए, एक पानी के अणु में दो हाइड्रोजन परमाणु होते हैं, लेकिन इसमें परमाणु हाइड्रोजन नहीं होता है (जो पृथक हाइड्रोजन परमाणुओं को संदर्भित करेगा)। हाइड्रोजन परमाणु की सैद्धांतिक समझ विकसित करने के प्रयास क्वांटम यांत्रिकी के इतिहास के लिए महत्वपूर्ण हैं। .

नई!!: इलेक्ट्रॉन और हाइड्रोजन परमाणु · और देखें »

हीरा

कोहिनूर की काँच प्रति कोहिनूर की एक और प्रति हीरों की आकृतियां हीरा एक पारदर्शी रत्न है। यह रासायनिक रूप से कार्बन का शुद्धतम रूप है। हीरा में प्रत्येक कार्बन परमाणु चार अन्य कार्बन परमाणुओं के साथ सह-संयोजी बन्ध द्वारा जुड़ा रहता है। कार्बन परमाणुओं के बाहरी कक्ष में उपस्थित सभी चारों इलेक्ट्रान सह-संयोजी बन्ध में भाग ले लेते हैं तथा एक भी इलेक्ट्रान संवतंत्र नहीं होता है। इसलिए हीरा ऊष्मा तथा विद्युत का कुचालन होता है। हीरा में सभी कार्बन परमाणु बहुत ही शक्तिशाली सह-संयोजी बन्ध द्वारा जुड़े होते हैं, इसलिए यह बहुत कठोर होता है। हीरा प्राक्रतिक पदार्थो में सबसे कठोर पदा‍र्थ है इसकी कठोरता के कारण इसका प्रयोग कई उद्योगो तथा आभूषणों में किया जाता है। हीरे केवल सफ़ेद ही नहीं होते अशुद्धियों के कारण इसका शेड नीला, लाल, संतरा, पीला, हरा व काला होता है। हरा हीरा सबसे दुर्लभ है। हीरे को यदि ओवन में ७६३ डिग्री सेल्सियस पर गरम किया जाये, तो यह जलकर कार्बन डाइ-आक्साइड बना लेता है तथा बिल्कूल ही राख नहीं बचती है। इससे यह प्रमाणित होता है कि हीरा कार्बन का शुद्ध रूप है। हीरा रासायनिक तौर पर बहुत निष्क्रिय होता है एव सभी घोलकों में अघुलनशील होता है। इसका आपेक्षिक घनत्व ३.५१ होता है। बहुत अधिक चमक होने के कारण हीरा को जवाहरात के रूप में उपयोग किया जाता है। हीरा उष्मीय किरणों के प्रति बहुत अधिक संवेदनशील होता है, इसलिए अतिशुद्ध थर्मामीटर बनाने में इसका उपयोग किया जाता है। काले हीरे का उपयोग काँच काटने, दूसरे हीरे के काटने, हीरे पर पालिश करने तथा चट्टानों में छेद करने के लिए किया जाता है। .

नई!!: इलेक्ट्रॉन और हीरा · और देखें »

जेनर डायोड

जेनर डायोड योजनाबद्ध प्रतीक करेंट-वोल्टेज 17 वोल्ट के ब्रेकडाउन-वोल्टेज वाला जेनर डायोड विशेषता. अग्र बायस्ड (पोसिटिव) दिशा और रिवर्स बायस्ड (नेगटिव) दिशा के बीच वोल्टेज स्केल का परिवर्तन गौर करें. जेनर डायोड एक प्रकार का डायोड है जो एक साधारण डायोड की तरह बिजली को आगे की दिशा में बहने की ही नहीं बल्कि यदि वोल्टेज, ब्रेकडाउन वोल्टेज से, जिसे "जेनर नी वोल्टेज" या "जेंनेर वोल्टेज" भी कहा जाता है, ज्यादा हुआ तो उलटी दिशा में भी बहने की अनुमति देता है। इस उपकरण को क्लारेंस जेनर के नाम पर नामित किया गया है, जिसने इस विद्युत गुण की खोज की। एक पारंपरिक ठोस-अवस्था वाला डायोड पर्याप्त बिजली की अनुमति नहीं देगा यदि वह रिवर्स ब्रेकडाउन वोल्टेज से नीचे रिवर्स-बायस्ड है। जब रिवर्स-बायस्ड ब्रेकडाउन वोल्टेज बढ़ जाता है, तो ऐवलांश ब्रेकडाउन की वजह से एक पारंपरिक डायोड उच्च बिजली के अधीन हो जाता है। यदि यह विद्युत प्रवाह बाह्य परिपथाकार द्वारा सीमित नहीं किया जाता, तो यह डायोड स्थायी रूप से क्षतिग्रस्त हो जाता है। भारी मात्रा में फोरवर्ड बायस्ड की अवस्था में (तीर की दिशा में विद्युत), डायोड अपने जंक्शन अन्तस्थ वोल्टेज और आंतरिक प्रतिरोध की वजह से वोल्टेज में गिरावट प्रदर्शित करता है। वोल्टेज की गिरावट की राशि, अर्धचालक पदार्थ और डोपिंग सांद्रता पर निर्भर करती है। एक जेनर डायोड लगभग यही गुण प्रदर्शित करता है, सिवाय इसके कि इस उपकरण को न्यूनीकृत भंग वोल्टेज के लिए डिज़ाइन किया गया है, तथाकथित जेनर वोल्टेज.

नई!!: इलेक्ट्रॉन और जेनर डायोड · और देखें »

जे॰ जे॰ थॉमसन

जोसेफ़ जॉन थॉमसन (१८ दिसम्बर १८५६ - ३० अगस्त १९४०) अंग्रेज़ भौतिक विज्ञानी थे। वो रॉयल सोसायटी ऑफ़ लंदन के निर्वाचित सदस्य थे। एक विख्यात वैज्ञानिक थे। उन्हौंने इलेक्ट्रॉन की खोज की थी। थॉमसन गैसों में बिजली के चालन पर अपने काम के लिए भौतिकी में 1906 नोबेल पुरस्कार से सम्मानित किये गए। उनके सात छात्रों में उनके बेटे जॉर्ज पेजेट थॉमसन सहित सभी भौतिक विज्ञान में या तो रसायन शास्त्र में नोबेल पुरस्कार विजेता बने। उनका रिकॉर्ड केवल जर्मन भौतिकशास्त्री अर्नाल्ड सोम्मेरफील्ड के बराबर है। .

नई!!: इलेक्ट्रॉन और जे॰ जे॰ थॉमसन · और देखें »

विद्युत

वायुमण्डलीय विद्युत विद्युत आवेशों के मौजूदगी और बहाव से जुड़े भौतिक परिघटनाओं के समुच्चय को विद्युत (Electricity) कहा जाता है। विद्युत से अनेक जानी-मानी घटनाएं जुड़ी है जैसे कि तडित, स्थैतिक विद्युत, विद्युतचुम्बकीय प्रेरण, तथा विद्युत धारा। इसके अतिरिक्त, विद्युत के द्वारा ही वैद्युतचुम्बकीय तरंगो (जैसे रेडियो तरंग) का सृजन एवं प्राप्ति सम्भव होता है? विद्युत के साथ चुम्बकत्व जुड़ी हुई घटना है। विद्युत आवेश वैद्युतचुम्बकीय क्षेत्र पैदा करते हैं। विद्युत क्षेत्र में रखे विद्युत आवेशों पर बल लगता है। समस्त विद्युत का आधार इलेक्ट्रॉन हैं। इलेक्ट्रानों के हस्तानान्तरण के कारण ही कोई वस्तु आवेशित होती है। आवेश की गति ही विद्युत धारा है। विद्युत के अनेक प्रभाव हैं जैसे चुम्बकीय क्षेत्र, ऊष्मा, रासायनिक प्रभाव आदि। जब विद्युत और चुम्बकत्व का एक साथ अध्ययन किया जाता है तो इसे विद्युत चुम्बकत्व कहते हैं। विद्युत को अनेकों प्रकार से परिभाषित किया जा सकता है किन्तु सरल शब्दों में कहा जाये तो विद्युत आवेश की उपस्थिति तथा बहाव के परिणामस्वरूप उत्पन्न उस सामान्य अवस्था को विद्युत कहते हैं जिसमें अनेकों कार्यों को सम्पन्न करने की क्षमता होती है। विद्युत चल अथवा अचल इलेक्ट्रान या प्रोटान से सम्बद्ध एक भौतिक घटना है। किसी चालक में विद्युत आवेशों के बहाव से उत्पन्न उर्जा को विद्युत कहते हैं। .

नई!!: इलेक्ट्रॉन और विद्युत · और देखें »

विद्युत चालन

किसी संचरण माध्यम (transmission medium) से होकर आवेशित कणों के प्रवाह को विद्युत चालन कहते हैं। आवेशों के प्रवाह से विद्युत धारा बनती है। आवेशों का प्रवाह दो कारणों से सम्भव है-.

नई!!: इलेक्ट्रॉन और विद्युत चालन · और देखें »

विद्युत धारा

आवेशों के प्रवाह की दिशा से धारा की दिशा निर्धारित होती है। विद्युत आवेश के गति या प्रवाह में होने पर उसे विद्युत धारा (इलेक्ट्रिक करेण्ट) कहते हैं। इसकी SI इकाई एम्पीयर है। एक कूलांम प्रति सेकेण्ड की दर से प्रवाहित विद्युत आवेश को एक एम्पीयर धारा कहेंगे। .

नई!!: इलेक्ट्रॉन और विद्युत धारा · और देखें »

विकृत पदार्थ

विकृत पदार्थ (degenrate matter) ऐसे पदार्थ को कहते हैं जिसका घनत्व इतना ज़्यादा हो कि उसके दाब (प्रॅशर) का अधिकतम भाग पाउली अपवर्जन नियम (Pauli exclusion principle) से उत्पन्न हो।, Alexander Bolonkin, Elsevier, 2011, ISBN 978-0-12-415801-6,...

नई!!: इलेक्ट्रॉन और विकृत पदार्थ · और देखें »

वॉयेजर द्वितीय

वायेजर द्वितीय एक अमरीकी मानव रहित अंतरग्रहीय शोध यान था जिसे वायेजर १ से पहले २० अगस्त १९७७ को अमरीकी अंतरिक्ष एजेंसी नासा द्वारा प्रक्षेपित किया गया था। यह काफी कुछ अपने पूर्व संस्करण यान वायेजर १ के समान ही था, किन्तु उससे अलग इसका यात्रा पथ कुछ धीमा है। इसे धीमा रखने का कारण था इसका पथ युरेनस और नेपचून तक पहुंचने के लिये अनुकूल बनाना। इसके पथ में जब शनि ग्रह आया, तब उसके गुरुत्वाकर्षण के कारण यह युरेनस की ओर अग्रसर हुआ था और इस कारण यह भी वायेजर १ के समान ही बृहस्पति के चन्द्रमा टाईटन का अवलोकन नहीं कर पाया था। किन्तु फिर भी यह युरेनस और नेपच्युन तक पहुंचने वाला प्रथम यान था। इसकी यात्रा में एक विशेष ग्रहीय परिस्थिति का लाभ उठाया गया था जिसमे सभी ग्रह एक सरल रेखा मे आ जाते है। यह विशेष स्थिति प्रत्येक १७६ वर्ष पश्चात ही आती है। इस कारण इसकी ऊर्जा में बड़ी बचत हुई और इसने ग्रहों के गुरुत्व का प्रयोग किया था। .

नई!!: इलेक्ट्रॉन और वॉयेजर द्वितीय · और देखें »

खण्ड (आवर्त सारणी)

आवर्त सारणी के खण्ड आवर्त सारणी (पीरियोडिक टेबल) में रासायनिक तत्वों के कुछ समूहों को कहते हैं। इस शब्द को प्रथम बार फ़्रेंच में चार्ल्स जैनेट ने प्रयोग किया था। एक खण्ड के सर्वोच्च-ऊर्जा प्रतिनिधि इलेक्ट्रॉन समान परमाणु ऑर्बिटल से होते हैं। अतः प्रत्येक खण्ड को उसके विशिष्ट ऑर्बिटल के नाम पर कहा जाता है.

नई!!: इलेक्ट्रॉन और खण्ड (आवर्त सारणी) · और देखें »

खाद्य परिरक्षण

विभिन्न संरक्षित खाद्य पदार्थ कनाडा का विश्व युद्ध प्रथम के समय का पोस्टर जो लोगों को सर्दियों के लिए भोजन संरक्षित करने के लिए प्रोत्साहित करता है। खाद्य परिरक्षण खाद्य को उपचारित करने और संभालने की एक ऐसी प्रक्रिया है जिससे उसके खराब होने (गुणवत्ता, खाद्यता या पौष्टिक मूल्य में कमी) की उस प्रक्रिया को रोकता है या बहुत कम कर देता है, जो सूक्ष्म जीवाणुओं द्वारा होती या तेज कर दी जाती है। यद्दपि कुछ तरीकों में, सौम्य बैक्टीरिया, जैसे खमीर या कवक का प्रयोग किया जाता है ताकि विशेष गुण बढ़ाए जा सके और खाद्य पदार्थों को संरक्षित किया जा सके (उदाहरण के तौर पर पनीर और शराब).

नई!!: इलेक्ट्रॉन और खाद्य परिरक्षण · और देखें »

ग्राही

दो परमाणुओं जे बीच परस्पर अभिक्रिया में इलेक्ट्रॉन‎ ग्रहण करने वाले परमाणु को ग्राही कहते हैं। श्रेणी:रसायन शास्त्र श्रेणी:रसायन शब्दावली.

नई!!: इलेक्ट्रॉन और ग्राही · और देखें »

ऑक्सीकरण संख्या

ऑक्सीकरण संख्या (oxidation number) या ऑक्सीकरण अवस्था (oxidation state) किसी रासायनिक यौगिक में बंधे हुए किसी परमाणु के ऑक्सीकरण (oxidation) के दर्जे का सूचक होता है। यह संख्या गिनाती है कि उस यौगिक के रासायनिक बंध में वह परमाणु कितने इलेक्ट्रान उस यौगिक में स्थित अन्य परमाणुओं को खो चुका है। उदाहरण के लिए, पानी (जिसका रासायनिक सूत्र H2O है) में दोनो हाइड्रोजन परमाणु अपना एक-एक इलेक्ट्रान ऑक्सीजन परमाणु को दे चुके होते हैं। इसलिये जल में हर हाइड्रोजन परमाणु की ऑक्सीकरण संख्या +1 होती है जबकि ऑक्सीजन की -2 होती है (क्योंकि वह खोने की बजाय दो इलेक्ट्रान प्राप्त कर लेता है)। .

नई!!: इलेक्ट्रॉन और ऑक्सीकरण संख्या · और देखें »

आयन

आयन (ion) ऐसे परमाणु या अणु है जिसमें इलेक्ट्रानों और प्रोटोनों की संख्या असामान होती है। इस से आयन में विद्युत आवेश (चार्ज) होता है। अगर इलेक्ट्रॉन की तादाद प्रोटोन से अधिक हो तो आयन में ऋणात्मक (नेगेटिव) आवेश होता है और उसे ऋणायन (anion, ऐनायन) भी कहते हैं। इसके विपरीत अगर इलेक्ट्रॉन की तादाद प्रोटोन से कम हो तो आयन में धनात्मक (पोज़िटिव) आवेश होता है और उसे धनायन (cation, कैटायन) भी कहते हैं। .

नई!!: इलेक्ट्रॉन और आयन · और देखें »

आयनन ऊर्जा

किसी विलगित (आइसोलेटेड) गैसीय अवस्था वाले परमाणु के सबसे शिथिलतः बद्ध (लूजली बाउण्ड) इलेक्ट्रान को परमाणु से अलग करने के लिये आवश्यक ऊर्जा, आयनन ऊर्जा (ionization energy (IE)) या 'आयनन विभव' या 'आयनन एन्थैल्पी' कहलाती है। \ A_ + E_ \to A^+_ \ + e^-.

नई!!: इलेक्ट्रॉन और आयनन ऊर्जा · और देखें »

इण्डोनेशियाई विकिपीडिया

इंडोनेशियाई विकिपीडिया विकिपीडिया का इंडोनेशियाई भाषा का संस्करण है और इस पर लेखों की कुल संख्या १,०४,००० से अधिक है (२३ मई २००९)। इस विकिपीडिया का पहला लेख इले़ट्रॉन (विद्युद्णु) ३० मई, २००३ को लिखा गया था, लेकिन इसका मुखपृष्ठ छः महीनों बाद २९ नवंबर को निर्मित किया गया था।.

नई!!: इलेक्ट्रॉन और इण्डोनेशियाई विकिपीडिया · और देखें »

इन्डस-२

इण्डस-२ (Indus-2) भारत के राजा रामन्ना प्रगत प्रौद्योगिकी केन्द्र, इन्दौर द्वारा विकसित एलेक्ट्रॉन त्वरक है। .

नई!!: इलेक्ट्रॉन और इन्डस-२ · और देखें »

इलैक्ट्रॉन आवरण

इलेक्ट्रॉन आवरण सहित आवर्त सारणी इलेक्ट्रॉन आवरण (अंग्रेज़ी:Electron Orbital) किसी परमाणु के नाभि की कक्षा में घूमते इलेक्ट्रॉन की कक्षा होती हैं। ये नाभि के किनारे स्थित एक के ऊपर एक चढ़े आवरणों की भांति सोचे जा सकते हैं। प्रत्येक आवरण में एक निश्चित संख्या में इलेक्ट्रॉन ही उपस्थित रह सकते हैं, अतः प्रत्येक आवरण एक विशिष्ट इलेक्ट्रॉन ऊर्जा से संबद्ध होते हैं। प्रत्येक आवरण को इलेक्ट्रॉनों से भरा होना चाहिये, इससे पहले कि उससे अगला आवरण भरना आरंभ हो। सबसे बाहरी आवरण में उपस्थित इलेक्ट्रॉन ही उस तत्त्व के गुण निश्चित करते हैं और वैलेन्स इलेक्ट्रॉन कहलाते हैं। इलेक्ट्रॉन आवरण में इलेक्ट्रॉन व्यवस्था देखने के लिये इलेक्ट्रॉन विन्यास देखें। .

नई!!: इलेक्ट्रॉन और इलैक्ट्रॉन आवरण · और देखें »

इलैक्ट्रॉनिक्स

तल पर जुड़ने वाले (सरफेस माउंट) एलेक्ट्रानिक अवयव विज्ञान के अन्तर्गत इलेक्ट्रॉनिक्स या इलेक्ट्रॉनिकी विज्ञान और प्रौद्योगिकी का वह क्षेत्र है जो विभिन्न प्रकार के माध्यमों (निर्वात, गैस, धातु, अर्धचालक, नैनो-संरचना आदि) से होकर आवेश (मुख्यतः इलेक्ट्रॉन) के प्रवाह एवं उन पर आधारित युक्तिओं का अध्ययन करता है। प्रौद्योगिकी के रूप में इलेक्ट्रॉनिकी वह क्षेत्र है जो विभिन्न इलेक्ट्रॉनिक युक्तियों (प्रतिरोध, संधारित्र, इन्डक्टर, इलेक्ट्रॉन ट्यूब, डायोड, ट्रान्जिस्टर, एकीकृत परिपथ (IC) आदि) का प्रयोग करके उपयुक्त विद्युत परिपथ का निर्माण करने एवं उनके द्वारा विद्युत संकेतों को वांछित तरीके से बदलने (manipulation) से संबंधित है। इसमें तरह-तरह की युक्तियों का अध्ययन, उनमें सुधार तथा नयी युक्तियों का निर्माण आदि भी शामिल है। ऐतिहासिक रूप से इलेक्ट्रॉनिकी एवं वैद्युत प्रौद्योगिकी का क्षेत्र समान रहा है और दोनो को एक दूसरे से अलग नही माना जाता था। किन्तु अब नयी-नयी युक्तियों, परिपथों एवं उनके द्वारा सम्पादित कार्यों में अत्यधिक विस्तार हो जाने से एलेक्ट्रानिक्स को वैद्युत प्रौद्योगिकी से अलग शाखा के रूप में पढाया जाने लगा है। इस दृष्टि से अधिक विद्युत-शक्ति से सम्बन्धित क्षेत्रों (पावर सिस्टम, विद्युत मशीनरी, पावर इलेक्ट्रॉनिकी आदि) को विद्युत प्रौद्योगिकी के अन्तर्गत माना जाता है जबकि कम विद्युत शक्ति एवं विद्युत संकेतों के भांति-भातिं के परिवर्तनों (प्रवर्धन, फिल्टरिंग, मॉड्युलेश, एनालाग से डिजिटल कन्वर्शन आदि) से सम्बन्धित क्षेत्र को इलेक्ट्रॉनिकी कहा जाता है। .

नई!!: इलेक्ट्रॉन और इलैक्ट्रॉनिक्स · और देखें »

इलेक्ट्रॉन न्यूट्रिनो

इलेक्ट्रॉन न्यूट्रिनो एक मूलभूत कण है। इसका प्रतीक चिह्न है। इसका आवेश शून्य होता है अर्थात यह एक उदासीन कण है। न्यूट्रिनों तीन प्रकार के होते हैं जिनमें से यह इलेक्ट्रॉन से सम्बद्ध लेप्टॉनों की श्रेणी में आता है। इसका द्रव्यमान लगभग शून्य माना जाता है, प्रायोगिक तौर पर इसका सीमान्त मान 2.2 Mev/c2 से कम है। इसका प्रचक्रण 1/2 होता है। यह दो फ्लेवर के साथ पाया जाता है जो कण और प्रतिकण हैं अर्थात इलेक्ट्रॉन न्यूट्रिनो एवं इलेक्ट्रॉन प्रतिन्यूट्रिनो। ज्ञात कणों में केवल न्यूट्रिनों ही ऐसे कण हैं जो केवल दुर्बल अन्योन्य क्रिया में भाग लेते हैं। न्यूट्रिनो प्रबल अन्योन्य क्रिया एवं विद्युत चुम्बकीय अन्योन्य क्रियाओं में भाग नहीं लेते। द्रव्यामान अज्ञात होने के कारण इनकी गुरुत्वीय अन्योन्य क्रिया का सही मान प्राप्त करना मुश्किल है। .

नई!!: इलेक्ट्रॉन और इलेक्ट्रॉन न्यूट्रिनो · और देखें »

इलेक्ट्रॉन विन्यास

आण्विक और परमाणु कक्षीय में विद्युदणु विद्युदणु विन्यास सारणी आणविक भौतिकी एवं परिमाण रासायनिकी (प्रमात्रा रासायनिकी) में किसी अणु, परमाणु या किसी अन्य भौतिक संरचना में इलेक्ट्रॉनों की व्यवस्था को इलेक्ट्रॉन विन्यास (electron configuaration) कहते हैं। इलेक्ट्रॉन विन्यास में इलेक्ट्रॉन को किसी परमाणु या आण्विक प्रणाली में वितरित करने का तरीका दिया गया होता है। उदाहरण के लिए, नियान का इलेक्ट्र्रॉनिक विन्यास यह है- 1s2 2s2 2p6.

नई!!: इलेक्ट्रॉन और इलेक्ट्रॉन विन्यास · और देखें »

इलेक्ट्रॉन वोल्ट

इलेक्ट्रॉन वोल्ट (चिन्ह eV) ऊर्जा की इकाई है। यह गतिज ऊर्जा की वह मात्रा है, जो एक इलेक्ट्रॉन द्वारा निर्वात में एक वोल्ट का विभवांतर पार करने पर प्राप्त की जाती है। सरल शब्दों में, यह 1 वोल्ट तथा 1 एलेक्ट्रानिक आवेश (e) के गुणनफल के बराबर होती है, जहाँ एक वोल्ट .

नई!!: इलेक्ट्रॉन और इलेक्ट्रॉन वोल्ट · और देखें »

इलेक्ट्रॉन गन

सीआरटी की इलेक्ट्रॉन बंदूक (एलेक्ट्रॉन गन) इलेक्ट्रॉन गन का योजनामूलक चित्र: ➀ गरम कैथोड ➁ वेनेट (Wehnelt) सिलिन्डर ➂ एनोड इलेक्ट्रॉन बंदूक (एलेक्ट्रॉन गन) की संरचना इलेक्ट्रॉन बंदूक (electron gun या एलेक्ट्रॉन गन) एक वैद्युत अवयव है जो निर्धारित गतिज ऊर्जा वाले इलेक्ट्रॉन पुंज पैदा करता है। यह प्रायः दूरदर्शन अभिग्राहीयों (टेलीविजन सेटों) में तथा संगणक पटलों (कम्प्यूटर मॉनिटरों) में प्रयोग की जाती है। इसके अलावा एलेक्ट्रॉन सूक्ष्मदर्शी, इलेक्ट्रॉन बीम वेल्डिंग मशीन, तथा त्वरकों में भी प्रयुक्त होती है। इलेक्ट्रॉन गन के दो मुख्य चरण हैं, इलेक्ट्रॉन उत्सर्जन का साधन तथा इलेक्ट्रॉन निष्कर्षण (extraction) का साधन। इलेक्ट्रॉन का उत्सर्जन तीन प्रकार से किया जा सकता है- तापायनिक उत्सर्जन, क्षेत्र उत्सर्जन और प्रकाश उत्सर्जन। निष्कर्षण दो प्रकार से किया जा सकता है- डी सी वोल्टेज द्वारा तथा रेडियो आवृति (RF) के वोल्टेज द्वारा।; इलेक्ट्रॉन स्रोत (गन).

नई!!: इलेक्ट्रॉन और इलेक्ट्रॉन गन · और देखें »

इलेक्ट्रॉन किरण अश्मलेखन

इलेक्ट्रॉन किरण अश्मलेखन (e-beam lithography) एक ऐसी पक्रिया है जिसमें इलेक्ट्रानों के किरण पुंज को रैसिस्ट से लिपे सतह पर एक सांचे (पैटर्न) के अनुसार क्रमवीक्षित (स्कैन) किया जाता है। इसका प्रमुख लाभ यह है कि इसकी सहायता से दृष्य प्रकाश के विवर्तन सीमा को लांघना सम्भव हो पाता है। जिससे नैनोमीटर स्तर तक के गुणादि (फीचर) देखे जा सकते हैं, अन्यथा यह सम्भव नहीं होता | प्रकाशिक अश्मलेखन में प्रयुक्त होने वाली मास्क के निर्माण में, कम मात्रा में अर्धचालक युक्तिओं के उत्पादन में तथा अनुसंधान और विकास में इसका प्रचुर मात्रा में उपयोग होने लगा है। .

नई!!: इलेक्ट्रॉन और इलेक्ट्रॉन किरण अश्मलेखन · और देखें »

कण भौतिकी

कण भौतिकी, भौतिकी की एक शाखा है जिसमें मूलभूत उप परमाणविक कणो के पारस्परिक संबन्धो तथा उनके अस्तित्व का अध्ययन किया जाता है, जिनसे पदार्थ तथा विकिरण निर्मित हैं। हमारी अब तक कि समझ के अनुसार कण क्वांटम क्षेत्रों के उत्तेजन (excitations) हैं। दूसरे कणों के साथ इनकी अन्तःक्रिया की अपनी गतिकी है। कण भौतिकी के क्षेत्र में अधिकांश रुचि मूलभूत क्षेत्रों (fundamental fields) में है। मौलिक क्षेत्रों और उनकी गतिशीलताओ के सार को सिद्धान्त के रूप में प्रस्तुत किया गया है। इसिलिये कण भौतिकी में अधिकतर स्टैंडर्ड मॉडल (Standard Model) के मूल कणों तथा उनके सम्भावित विस्तार के बारे में अध्यन किया जाता है। .

नई!!: इलेक्ट्रॉन और कण भौतिकी · और देखें »

कण सांख्यिकी

सांख्यिकीय यांत्रिकी में कणों के विशिष्ट वर्णन को कण सांख्यिकी (Particle statistics) कहते हैं। भौतिकी में मुख्य रूप से तीन प्रकार की सांख्यिकी का उपयोग होता है। चिरसंमत सांख्यिकी (मैक्सबेल- बोल्ट्जमैन सांख्यिकी), बोस-आइंस्टाइन और फर्मी-डिरैक सांख्यिकी। .

नई!!: इलेक्ट्रॉन और कण सांख्यिकी · और देखें »

कणाभ

भौतिकी में कणाभ (Quasiparticle) उन्मज्जी संवृति है जो स्थूल रूप से एक जटिल प्रणाली है जैसे एक ठोस का व्यवहार जिसमें कि मुक्त आकाश में दुर्बल अन्योन्य क्रिया करने वाले भिन्न कण हों। उदाहरण के लिए इलेक्ट्रॉन किसी अर्धचालक में गति करता है तो अन्य इलेक्ट्रोनों और नाभिक से टक्करों के कारण इसकी गति जटिल रूप से पथित होती है लेकिन यह लगभग उसी तरह व्यवहार करता है जैसे भिन्न द्रव्यमान का कोई इलेक्ट्रॉन व्यवधान रहित मुक्त आकाश में गति करता है। भिन्न द्रव्यमान के इस "इलेक्ट्रॉन" को "इलेक्ट्रॉन कणाभ" कहते हैं। .

नई!!: इलेक्ट्रॉन और कणाभ · और देखें »

कणों की सूची

यह सूची भिन्न प्रकार के उन सभी कणों की है जो ज्ञात हैं अथवा उनकी उपस्थिति सैद्धान्तिक रूप से दी गई है और यह माना जाता है कि पूरा ब्रह्माण्ड इन्हीं कणों से बना हुआ है। विभिन्न प्रकार के विशिष्ट कणों की सूची के लिए नीचे दिये गए विभिन्न पृष्ठों को देखें। .

नई!!: इलेक्ट्रॉन और कणों की सूची · और देखें »

कार्बन-१२

कार्बन-१२ कार्बन के प्रचुर उपलब्ध दो स्थिर समस्थानिकों में से एक है। यह कुल प्रांगार मात्रा का ९८.९% है। इसके नाभि में ६ प्रोटोन और ६ न्यूट्रॉन हैं। इनके बाहर ६ इलेक्ट्रॉन रहते हैं। .

नई!!: इलेक्ट्रॉन और कार्बन-१२ · और देखें »

कार्य फलन

ठोस अवस्था भौतिकी में, निर्वात में किसी ठोस से एक इलेक्ट्रॉन निकालने के लिये आवश्यक न्यूनतम ऊर्जा को उस ठोस का कार्य-फलन (work function) कहते हैं। श्रेणी:इलेक्ट्रॉन.

नई!!: इलेक्ट्रॉन और कार्य फलन · और देखें »

कार्ल डेविड ऐंडरसन

कार्ल डेविड एन्डरसन कार्ल डेविड ऐंडर्सन (Carl David Anderson (3 सितम्बर 1905 - 11 जनवरी 1991) अमरीका के भौतिक वैज्ञानिक तथा १९३६ के भौतिकी के नोबेल पुरस्कार विजेता थे। .

नई!!: इलेक्ट्रॉन और कार्ल डेविड ऐंडरसन · और देखें »

क्षेत्र उत्सर्जन

किसी धातु के पृष्ट पर लगाये गये विद्युत क्षेत्र के कारण उस धातु से निकलने वाले इलेक्ट्रानों को क्षेत्र इलेक्ट्रॉन उत्सर्जन (Field electron emission या field emission (FE) या electron field emission) कहते हैं। .

नई!!: इलेक्ट्रॉन और क्षेत्र उत्सर्जन · और देखें »

क्वाण्टम संख्या

यह इलेक्ट्रान की स्थिति और उर्जा का मान ज्ञात करने के लिए उपयोग किया जाता है। .

नई!!: इलेक्ट्रॉन और क्वाण्टम संख्या · और देखें »

क्वार्क

प्रोटॉन क्वार्क एक प्राथमिक कण है तथा यह पदार्थ का मूल घटक है। क्वार्क एकजुट होकर सम्मिश्र कण हेड्रॉन बनाते है, परमाणु नाभिक के मुख्य अवयव प्रोटॉन व न्यूट्रॉन इनमें से सर्वाधिक स्थिर हैं। नैसर्गिक घटना रंग बंधन के कारण, क्वार्क ना कभी सीधे प्रेक्षित हुआ या एकांत में पाया गया; वे केवल हेड्रॉनों के भीतर पाये जा सकते है, जैसे कि बेरिऑनों (उदाहरणार्थ: प्रोटान और न्यूट्रान) और मेसॉनों के रूप में। क्वार्क के अनेक आंतरिक गुण है, जिनमे विद्युत आवेश, द्रव्यमान, रंग आवेश और स्पिन सम्मिलित है। कण भौतिकी के मानक मॉडल में क्वार्क एकमात्र प्राथमिक कण है जो सभी चार मूलभूत अंतःक्रिया या मौलिक बलों (विद्युत चुंबकत्व, गुरुत्वाकर्षण, प्रबल अंतःक्रिया और दुर्बल अंतःक्रिया) को महसूस करता है, साथ ही यह मात्र ज्ञात कण है जिसका विद्युत आवेश प्राथमिक आवेश का पूर्णांक गुणनफल नहीं है। क्वार्क के छह प्रकार है, जो जाने जाते है फ्लेवर से: अप, डाउन, स्ट्रेन्ज, चार्म, टॉप और बॉटम। अप व डाउन क्वार्क के द्रव्यमान सभी क्वार्को में सबसे कम है। अपेक्षाकृत भारी क्वार्क कणिका क्षय की प्रक्रिया के माध्यम से तीव्रता से अप व डाउन क्वार्क में बदल जाते हैं। कणिका क्षय, एक उच्च द्रव्य अवस्था का एक निम्न द्रव्य अवस्था में परिवर्तन है। इस वजह से, अप व डाउन क्वार्क आम तौर पर स्थिर होते है और ब्रह्मांड में सबसे आम हैं, वहीं स्ट्रेन्ज, चार्म, बॉटम और टॉप क्वार्क केवल उच्च ऊर्जा टक्करों में उत्पन्न किए जा सकते है। हर क्वार्क फ्लेवर के प्रतिकण होते है जिनके परिमाण तो क्वार्क के बराबर होते है परंतु चिन्ह विपरीत रखते है तथा यह एंटीक्वार्क के रूप में जाने जाते है। क्वार्क मॉडल स्वतंत्र रूप से भौतिकविदों मरे गेल-मन और जॉर्ज वाइग द्वारा 1964 में प्रस्तावित किया गया था। क्वार्क हेड्रॉनों के अंग के रूप में पेश किए गए थे। 1968 में स्टैनफोर्ड रैखिक त्वरक केंद्र पर प्रयोग होने तक उनके भौतिक अस्तित्व के बहुत कम प्रमाण थे। त्वरक प्रयोगों ने सभी छह फ्लेवरों के लिए प्रमाण प्रदान किए। टॉप क्वार्क सबसे अंत में फर्मीलैब पर 1995 में खोजा गया। .

नई!!: इलेक्ट्रॉन और क्वार्क · और देखें »

कैथोड किरण नलिका

रंगीन सीआरटी का काटा हुआ आरेख: '''१.''' तीन इलेक्ट्रॉन बंदूक (इलेक्ट्रान गन) (लाल, हरा और नीले फॉस्फर बिंदु हेतु)'''२.''' इलेक्ट्रॉन किरण'''३.''' केन्द्रन कुंडली'''४.''' कोण देने की कुंडलियां'''५.''' धनाग्र (एनोड) संबंध'''६.''' चित्र के अनावश्यक लाल, हरे और नीले भाग को छिपाने और किरणों को पृथक करने के लिए आवरण'''७.''' फॉस्फर पर्त में लाल, नीली और हरित क्षेत्र'''६.''' फॉस्फर-मंडित पटल का आंतरिक दृश्य ऋणाग्र किरण नलिका (अंग्रेज़ी:कैथोड रे ट्यूब, लघुरूप:सी.आर.टी.) एक निर्वात नलिका होती है, जिसमें एक इलेक्ट्रॉन बंदूक (ऋणवेशिक स्रोत) और एक प्रदीप्त पटल होता है। इसमें इलेक्ट्रॉन को त्वरित करने और कोण देने के लिए आंतरिक या बाह्य प्रविधि (तकनीक) का प्रयोग होता है। ये नलिका पटल पर इलेक्ट्रॉन की किरण को डाल कर प्रकाश उत्सर्जित कर छवि निर्माण करने के प्रयोग में आता है। ये छवि किसी विद्युत संकेत तरंगरूप (दोलनदर्शी), छवि (दूरदर्शन, या संगणक पटल) या तेजोन्वेष (राडार) के लक्ष्य दिखाने के लिए होती है। ये एक अल्फा विकिरण एमिटर है। Image:CRT screen.

नई!!: इलेक्ट्रॉन और कैथोड किरण नलिका · और देखें »

कैथोड किरणें

एक निर्वात नलिका में उत्पन्न कैथोड किरणें जिनको समुचित चुम्बकीय क्षेत्र लगाकर वृत्तीय पथ में मोड दिया गया है। कैथोड किरणें (Cathode rays) वास्तव में किसी निर्वात नलिका में उत्पन्न इलेक्ट्रॉनों का पुंज है। .

नई!!: इलेक्ट्रॉन और कैथोड किरणें · और देखें »

केन्द्रक (परमाणु)

किसी परमाणु का अतिघनत्व युक्त भारी केन्द्र जहाँ प्रोटान और न्यूट्रॉन स्थित होते हैं। इलेक्ट्रान इसी नाभि के चक्कर काटता है। केन्द्रक.

नई!!: इलेक्ट्रॉन और केन्द्रक (परमाणु) · और देखें »

कोशिकीय श्वसन

सजीव कोशिकाओं में भोजन के आक्सीकरण के फलस्वरूप ऊर्जा उत्पन्न होने की क्रिया को कोशिकीय श्वसन कहते हैं। यह एक केटाबोलिक क्रिया है जो आक्सीजन की उपस्थिति या अनुपस्थिति दोनों ही अवस्थाओं में सम्पन्न हो सकती है। इस क्रिया के दौरान मुक्त होने वाली ऊर्जा को एटीपी नामक जैव अणु में संग्रहित करके रख लिया जाता है जिसका उपयोग सजीव अपनी विभिन्न जैविक क्रियाओं में करते हैं। यह जैव-रासायनिक क्रिया पौधों एवं जन्तुओं दोनों की ही कोशिकाओं में दिन-रात हर समय होती रहती है। कोशिकाएँ भोज्य पदार्थ के रूप में ग्लूकोज, अमीनो अम्ल तथा वसीय अम्ल का प्रयोग करती हैं जिनको आक्सीकृत करने के लिए आक्सीजन का परमाणु इलेक्ट्रान ग्रहण करने का कार्य करता है। कोशिकीय श्वसन एवं श्वास क्रिया में अभिन्न सम्बंध है एवं ये दोनों क्रियाएँ एक-दूसरे की पूरक हैं। श्वांस क्रिया सजीव के श्वसन अंगों एवं उनके वातावरण के बीच होती है। इसके दौरान सजीव एवं उनके वातावरण के बीच आक्सीजन एवं कार्बन डाईऑक्साइड गैस का आदान-प्रदान होता है तथा इस क्रिया द्वारा आक्सीजन गैस वातावरण से सजीवों के श्वसन अंगों में पहुँचती है। आक्सीजन गैस श्वसन अंगों से विसरण द्वारा रक्त में प्रवेश कर जाती है। रक्त परिवहन का माध्यम है जो इस आक्सीजन को शरीर के विभिन्न भागों की कोशिकाओं में पहुँचा देता है। वहाँ इसका उपयोग कोशिकाएँ अपने कोशिकीय श्वसन में करती हैं। श्वसन की क्रिया प्रत्येक जीवित कोशिका के कोशिका द्रव्य (साइटोप्लाज्म) एवं माइटोकाण्ड्रिया में सम्पन्न होती है। श्वसन सम्बन्धित प्रारम्भिक क्रियाएँ साइटोप्लाज्म में होती है तथा शेष क्रियाएँ माइटोकाण्ड्रियाओं में होती हैं। चूँकि क्रिया के अंतिम चरण में ही अधिकांश ऊर्जा उत्पन्न होती हैं। इसलिए माइटोकाण्ड्रिया को कोशिका का श्वसनांग या शक्ति-गृह (पावर हाउस) कहा जाता है। .

नई!!: इलेक्ट्रॉन और कोशिकीय श्वसन · और देखें »

अपचायक

रसायन शास्त्र में अपचायक (reducing agent) ऐसे रासायनिक तत्व या रासायनिक यौगिक को कहते हैं जो रासायनिक अभिक्रिया (रिऐक्शन) में एक या एक से अधिक इलेक्ट्रॉन किसी अन्य रसायन को देता है। इलेक्ट्रॉन लेने वाले रसायन को आक्सीकारक (oxidizing agent) कहते हैं और अपचायक व आक्सीकारक की आपसी अभिक्रिया को रेडॉक्स अभिक्रिया कहते हैं। मसलन हाइड्रोजन और ओक्सीजन जब अभिक्रिया कर के पानी बनाते हैं इसमें हाइड्रोजन अपचायक होता है और उसके दो परमाणु एक ओक्सीजन के परमाणु को एक-एक इलेक्ट्रॉन देते हैं। इस अभिक्रिया में ओक्सीजन आक्सीकारक होता है। .

नई!!: इलेक्ट्रॉन और अपचायक · और देखें »

अर्धचालक युक्ति

अर्धचालक युक्तियाँ (Semiconductor devices) उन एलेक्ट्रानिक अवयवों को कहते हैं जो अर्धचालक पदार्थों के गुण-धर्मों का उपयोग करके बनाये जाते हैं। सिलिकॉन, जर्मेनियम और गैलिअम आर्सेनाइड मुख्य अर्धचालक पदार्थ हैं। अधिकांश अनुप्रयोगों में अब उन सभी स्थानों पर अर्धचालक युक्तियाँ प्रयोग की जाने लगी हैं जहाँ पहले उष्मायनिक युक्तियाँ (निर्वात ट्यूब) प्रयोग की जाती थीं। अर्धचालक युक्तियाँ, ठोस अवस्था में एलेक्ट्रानिक संचलन पर आधारित हैं जबकि ट्यूब युक्तियाँ उच्चा निर्वात या गैसीय अवस्था में उष्मायनों के चालन पर आधारित थीं। निर्माण के आधार पर अर्धचालक युक्तियाँ मुख्यतः दो प्रकार की होती हैं - अकेली युक्तियाँ और एकीकृत परिपथ (IC) .

नई!!: इलेक्ट्रॉन और अर्धचालक युक्ति · और देखें »

अर्नेस्ट रदरफोर्ड

अर्नेस्ट रदरफोर्ड (३० अगस्त १८७१ - ३१ अक्टूबर १९३७) प्रसिद्ध रसायनज्ञ तथा भौतिकशास्त्री थे। उन्हें नाभिकीय भौतिकी का जनक माना जाता है। .

नई!!: इलेक्ट्रॉन और अर्नेस्ट रदरफोर्ड · और देखें »

अवपरमाणुक कण

अवपरमाणुक कणों का सोपान (हाइरार्की) भौतिकी में अवपरमाणुक कण (subatomic particles) उन कणों को कहते हैं जिनसे मिलकर न्युक्लियॉन (nucleons) और परमाणु बने हैं। अवपरमाणुक कण दो प्रकार के हैं -.

नई!!: इलेक्ट्रॉन और अवपरमाणुक कण · और देखें »

अवलोकन टनलिंग सूक्ष्मदर्शी यंत्र

(100) आणुविक स्तर पर सतहों को देखने के लिये अवलोकन टनलिंग सूक्ष्मदर्शी यंत्र (अंगरेजी में.

नई!!: इलेक्ट्रॉन और अवलोकन टनलिंग सूक्ष्मदर्शी यंत्र · और देखें »

अंतरिक्ष विज्ञान

गैलेक्सी के एक भाग को प्रदर्शित करता हुआ एक तस्वीर अंतरिक्ष विज्ञान एक व्यापक शब्द है जो ब्रह्मांड के अध्ययन से जुड़े विभिन्न विज्ञान क्षेत्रों का वर्णन करता है तथा सामान्य तौर पर इसका अर्थ "पृथ्वी के अतिरिक्त" तथा "पृथ्वी के वातावरण से बाहर" भी है। मूलतः, इन सभी क्षेत्रों को खगोल विज्ञान का हिस्सा माना गया था। हालांकि, हाल के वर्षों में खगोल के कुछ क्षेत्रों, जैसे कि खगोल भौतिकी, का इतना विस्तार हुआ है कि अब इन्हें अपनी तरह का एक अलग क्षेत्र माना जाता है। कुल मिला कर आठ श्रेणियाँ हैं, जिनका वर्णन अलग से किया जा सकता है; खगोल भौतिकी, गैलेक्सी विज्ञान, तारकीय विज्ञान, पृथ्वी से असंबंधित ग्रह विज्ञान, अन्य ग्रहों का जीव विज्ञान, एस्ट्रोनॉटिक्स/ अंतरिक्ष यात्रा, अंतरिक्ष औपनिवेशीकरण और अंतरिक्ष रक्षा.

नई!!: इलेक्ट्रॉन और अंतरिक्ष विज्ञान · और देखें »

उत्सर्जन वर्णक्रम

उत्सर्जन वर्णक्रम (emission spectrum) किसी रासायनिक तत्व या रासायनिक यौगिक से उत्पन्न होने वाले विद्युतचुंबकीय विकिरण (रेडियेशन) के वर्णक्रम (स्पेक्ट्रम) को कहते हैं। जब कोई परमाणु या अणु अधिक ऊर्जा वाली स्थिति से कम ऊर्जा वाली स्थिति में आता है तो वह इस ऊर्जा के अंतर को फ़ोटोन के रूप में विकिरणित करता है। इस फ़ोटोन​ का तरंगदैर्घ्य (वेवलेन्थ​) क्या है, यह उस रसायन पर और उसकी ऊर्जा स्थिति (तापमान, आदि) पर निर्भर करता है। किसी सुदूर स्थित सामग्री से उत्पन्न विकिरण के वर्णक्रम को यदि परखा जाए तो अनुमान लगाया जा सकता है कि वह किन रसायनों की बनी हुई है। यही तथ्य खगोलशास्त्र में हमसे हज़ारों प्रकाश-वर्ष दूर स्थित तारों व ग्रहों की रसायनिक रचना समझने में सहयोगी होता है। .

नई!!: इलेक्ट्रॉन और उत्सर्जन वर्णक्रम · और देखें »

उदासीन जोड़ी प्रभाव

भारी अधातुओं के s उपकक्षा में मौजूद दो इलेक्ट्रॉन किसी भी रासायनिक अभिक्रिया में भाग नहीं लेते, अर्थात यह इलेक्ट्रान जोड़ी उदासीन रहती है। इस प्रभाव को उदासीन जोड़ी प्रभाव (Inert pair effect) कहा जाता है। श्रेणी:रासायनिक अभिक्रियाएँ श्रेणी:अधातु.

नई!!: इलेक्ट्रॉन और उदासीन जोड़ी प्रभाव · और देखें »

यहां पुनर्निर्देश करता है:

ऍलॅक्ट्रॉन, एलेक्ट्रान, एलेक्ट्रॉन, विद्युदअणु, विद्युद्णु, इलैक्ट्रॉन, इलेक्ट्रान, इलेक्ट्रानों, इलेक्ट्रोन, इलेक्ट्रोनों, इलॅक्ट्रॉन

निवर्तमानआने वाली
अरे! अब हम फेसबुक पर हैं! »