लोगो
यूनियनपीडिया
संचार
Google Play पर पाएं
नई! अपने एंड्रॉयड डिवाइस पर डाउनलोड यूनियनपीडिया!
मुक्त
ब्राउज़र की तुलना में तेजी से पहुँच!
 

द्रव हिलियम और हिलियम

शॉर्टकट: मतभेद, समानता, समानता गुणांक, संदर्भ

द्रव हिलियम और हिलियम के बीच अंतर

द्रव हिलियम vs. हिलियम

द्रव अवस्था में स्थित हिलियम को द्रव हिलियम (liquid helium) कहते हैं। मानक दाब पर बहुत कम ताप (लगभग 4K . तरलीकृत हीलियम शुद्ध हीलियम से भरी गैस डिस्चार्ज ट्यूब हिलियम (Helium) एक रासायनिक तत्त्व है जो प्रायः गैसीय अवस्था में रहता है। यह एक निष्क्रिय गैस या नोबेल गैस (Noble gas) है तथा रंगहीन, गंधहीन, स्वादहीन, विष-हीन (नॉन-टॉक्सिक) भी है। इसका परमाणु क्रमांक २ है। सभी तत्वों में इसका क्वथनांक (boiling point) एवं गलनांक (melting point) सबसे कम है। द्रव हिलियम का प्रयोग पदार्थों को अत्यन्त कम ताप तक ठण्डा करने के लिये किया जाता है; जैसे अतिचालक तारों को १.९ डिग्री केल्विन तक ठण्डा करने के लिये। हीलियम अक्रिय गैसों का एक प्रमुख सदस्य है। इसका संकेत He, परमाणुभार ४, परमाणुसंख्या २, घनत्व ०.१७८५, क्रांतिक ताप -२६७.९०० और क्रांतिक दबाव २ २६ वायुमंडल, क्वथनांक -२६८.९० सें.

द्रव हिलियम और हिलियम के बीच समानता

द्रव हिलियम और हिलियम आम में 2 बातें हैं (यूनियनपीडिया में): द्रव, अतिचालकता

द्रव

द्रव का कोई निश्चित आकार नहीं होता। द्रव जिस पात्र में रखा जाता है उसी का आकार ग्रहण कर लेता है। प्रकृति में सभी रासायनिक पदार्थ साधारणत: ठोस, द्रव और गैस तथा प्लाज्मा - इन चार अवस्थाओं में पाए जाते हैं। द्रव और गैस प्रवाहित हो सकते हैं, किंतु ठोस प्रवाहित नहीं होता। लचीले ठोस पदार्थों में आयतन अथवा आकार को विकृत करने से प्रतिबल उत्पन्न होता है। अल्प विकृतियों के लिए विकृति और प्रतिबल परस्पर समानुपाती होते हैं। इस गुण के कारण लचीले ठोस एक निश्चित मान तक के बाहरी बलों को सँभालने की क्षमता रखते हैं। प्रवाह का गुण होने के कारण द्रवों और गैसों को तरल पदार्थ (fluid) कहा जाता है। ये पदार्थ कर्तन (shear) बलों को सँभालने में अक्षम होते हैं और गुरुत्वाकर्षण के प्रभाव के कारण प्रवाहित होकर जिस बरतन में रखे रहते हैं, उसी का आकार धारण कर लेते हैं। ठोस और तरल का यांत्रिक भेद बहुत स्पष्ट नहीं है। बहुत से पदार्थ, विशेषत: उच्च कोटि के बहुलक (polymer) के यांत्रिक गुण, श्यान तरल (viscous fluid) और लचीले ठोस के गुणों के मध्यवर्ती होते हैं। प्रत्येक पदार्थ के लिए एक ऐसा क्रांतिक ताप (critical temperature) पाया जाता है, जिससे अधिक होने पर पदार्थ केवल तरल अवस्था में रह सकता है। क्रांतिक ताप पर पदार्थ की द्रव और गैस अवस्था में विशेष अंतर नहीं रह जाता। इससे नीचे के प्रत्येक ताप पर द्रव के साथ उसका कुछ वाष्प भी उपस्थित रहता है और इस वाष्प का कुछ निश्चित दबाव भी होता है। इस दबाव को वाष्प दबाव कहते हैं। प्रत्येक ताप पर वाष्प दबाव का अधिकतम मान निश्चित होता है। इस अधिकतम दबाव को संपृक्त-वाष्प-दबाव के बराबर अथवा उससे अधिक हो, तो द्रव स्थायी रहता है। यदि ऊपरी दबाव द्रव के संपृक्तवाष्प-दबाव से कम हो, तो द्रव अस्थायी होता है। संपृक्त-वाष्प-दबाव ताप के बढ़ने से बढ़ता है। जिस ताप पर द्रव का संपृक्त-वाष्प-दबाव बाहरी वातावरण के दबाव के बराबर हो जाता है, उसपर द्रव बहुत तेजी से वाष्पित होने लगता है। इस ताप को द्रव का क्वथनांक (boiling point) कहते हैं। यदि बाहरी दबाव सर्वथा स्थायी हो तो क्वथनांक से नीचे द्रव स्थायी रहता है। क्वथनांक पर पहुँचने पर यह खौलने लगता है। इस दशा में यह ताप का शोषण करके द्रव अवस्था से गैस अवस्था में परिवर्तित होने लगता है। क्वथनांक पर द्रव के इकाई द्रव्यमान को द्रव से पूर्णत: गैस में परिवर्तित करने के लिए जितने कैलोरी ऊष्मा की आवश्यकता होती है, उसे द्रव के वाष्पीभवन की गुप्त ऊष्मा कहते हैं। विभिन्न द्रव पदार्थों के लिए इसका मान भिन्न होता है। एक नियत दबाव पर ठोस और द्रव दोनों रूप साथ साथ एक निश्चित ताप पर पाए जा सकते हैं। यह ताप द्रव का हिमबिंदु या ठोस का द्रवणांक कहलाता है। द्रवणांक पर पदार्थ के इकाई द्रव्यमान को ठोस से पूर्णत: द्रव में परिवर्तित करने में जितनी ऊष्मा की आवश्यकता होती है, उसे ठोस के गलन की गुप्त ऊष्मा कहते हैं। अक्रिस्टली पदार्थों के लिए कोई नियत गलनांक नहीं पाया जाता। वे गरम करने पर धीरे धीरे मुलायम होते जाते हैं और फिर द्रव अवस्था में आ जाते हैं। काँच तथा काँच जैसे अन्य पदार्थ इसी प्रकार का व्यवहार करते हैं। एक नियत ताप और नियत दबाव पर प्रत्येक द्रव्य की तीनों अवस्थाएँ एक साथ विद्यमान रह सकती हैं। दबाव और ताप के बीच खीचें गए आरेख (diagram) में ये नियत ताप और दबाव एक बिंदु द्वारा प्रदर्शित किए जाते हैं। इस बिंदु को द्रव का त्रिक् बिंदु (triple point) कहते हैं। त्रिक् विंदु की अपेक्षा निम्न दाबों पर द्रव अस्थायी रहता है। यदि किसी ठोस को त्रिक् विंदु की अपेक्षा निम्न दबाव पर रखकर गरम किया जाए तो वह बिना द्रव बने ही वाष्प में परिवर्तित हो जाता है, अर्थात् ऊर्ध्वपातित (sublime) हो जाता है। द्रव के मुक्त तल में, जो उस द्रव के वाष्प या सामान्य वायु के संपर्क में रहता है, एक विशेष गुण पाया जाता है, जिसके कारण यह तल तनी हुई महीन झिल्ली जैसा व्यवहार करता है। इस गुण को पृष्ठ तनाव (surface tension) कहते हैं। पृष्ठ तनाव के कारण द्रव के पृष्ठ का क्षेत्रफल यथासंभव न्यूनतम होता है। किसी दिए आयतन के लिए सबसे कम क्षेत्रफल एक गोले का होता है। अत: ऐसी स्थितियों में जब कि बाहरी बल नगण्य माने जा सकते हों द्रव की बूँदे गोल होती हैं। जब कोई द्रव किसी ठोस, या अन्य किसी अमिश्रय द्रव, के संपर्क में आता है तो भी संपर्क तल पर तनाव उत्पन्न होता है। साधारणत: कोई भी पदार्थ केवल एक ही प्रकार के द्रव रूप में प्राप्त होता है, किंतु इसके कुछ अपवाद भी मिलते हैं, जैसे हीलियम गैस को द्रवित करके दो प्रकार के हीलियम द्रव प्राप्त किए जा सकते हैं। उसी प्रकार पैरा-ऐज़ॉक्सी-ऐनिसोल (Para-azoxy-anisole) प्रकाशत: विषमदैशिक (anisotropic) द्रव के रूप में, क्रिस्टलीय अवस्था में तथा सामान्य द्रव के रूप में भी प्राप्त हो सकता है। .

द्रव और द्रव हिलियम · द्रव और हिलियम · और देखें »

अतिचालकता

सामान्य चालकों तथा अतिचालकों में ताप के साथ प्रतिरोधकता का परिवर्तन जब किसी मैटेरियल को 0°k तक ठंडा किया जाता है तो उसका प्रतिरोध पूर्णतः शून्य प्रतिरोधकता प्रदर्शित करते हैं। उनके इस गुण को अतिचालकता (superconductivity) कहते हैं। शून्य प्रतिरोधकता के अलावा अतिचालकता की दशा में पदार्थ के भीतर चुम्बकीय क्षेत्र भी शून्य हो जाता है जिसे मेसनर प्रभाव (Meissner effect) के नाम से जाना जाता है। सुविदित है कि धात्विक चालकों की प्रतिरोधकता उनका ताप घटाने पर घटती जाती है। किन्तु सामान्य चालकों जैसे ताँबा और चाँदी आदि में, अशुद्धियों और दूसरे अपूर्णताओं (defects) के कारण एक सीमा के बाद प्रतिरोधकता में कमी नहीं होती। यहाँ तक कि ताँबा (कॉपर) परम शून्य ताप पर भी अशून्य प्रतिरोधकता प्रदर्शित करता है। इसके विपरीत, अतिचालक पदार्थ का ताप क्रान्तिक ताप से नीचे ले जाने पर, इसकी प्रतिरोधकता तेजी से शून्य हो जाती है। अतिचालक तार से बने हुए किसी बंद परिपथ की विद्युत धारा किसी विद्युत स्रोत के बिना सदा के लिए स्थिर रह सकती है। अतिचालकता एक प्रमात्रा-यांत्रिक दृग्विषय (quantum mechanical phenomenon.) है। अतिचालक पदार्थ चुंबकीय परिलक्षण का भी प्रभाव प्रदर्शित करते हैं। इन सबका ताप-वैद्युत-बल शून्य होता है और टामसन-गुणांक बराबर होता है। संक्रमण ताप पर इनकी विशिष्ट उष्मा में भी अकस्मात् परिवर्तन हो जाता है। यह विशेष उल्लेखनीय है कि जिन परमाणुओं में बाह्य इलेक्ट्रॉनों की संख्या 5 अथवा 7 है उनमें संक्रमण ताप उच्चतम होता है और अतिचालकता का गुण भी उत्कृष्ट होता है। .

अतिचालकता और द्रव हिलियम · अतिचालकता और हिलियम · और देखें »

सूची के ऊपर निम्न सवालों के जवाब

द्रव हिलियम और हिलियम के बीच तुलना

द्रव हिलियम 7 संबंध है और हिलियम 23 है। वे आम 2 में है, समानता सूचकांक 6.67% है = 2 / (7 + 23)।

संदर्भ

यह लेख द्रव हिलियम और हिलियम के बीच संबंध को दर्शाता है। जानकारी निकाला गया था, जिसमें से एक लेख का उपयोग करने के लिए, कृपया देखें:

अरे! अब हम फेसबुक पर हैं! »