हम Google Play स्टोर पर Unionpedia ऐप को पुनर्स्थापित करने के लिए काम कर रहे हैं
🌟हमने बेहतर नेविगेशन के लिए अपने डिज़ाइन को सरल बनाया!
Instagram Facebook X LinkedIn

वास्तविक संख्या और समूह (गणितशास्त्र)

शॉर्टकट: मतभेद, समानता, समानता गुणांक, संदर्भ

वास्तविक संख्या और समूह (गणितशास्त्र) के बीच अंतर

वास्तविक संख्या vs. समूह (गणितशास्त्र)

गणित में, वास्तविक संख्या सरल रेखा के अनुदिश किसी राशी को प्रस्तुत करने वाला मान है। वास्तविक संख्याओं में सभी परिमेय संख्यायें जैसे -5 एवं भिन्नात्मक संख्यायें जैसे 4/3 और सभी अपरिमेय संख्यायें जैसे √2 (1.41421356…, 2 का वर्गमूल, एक अप्रिमेय बीजीय संख्या) शामिल हैं। वास्तविक संख्याओं में अप्रिमेय संख्याओं को शामिल करने से इन्हें वास्तविक संख्या रेखा के रूप में एक रेखा पर निरुपित किये जा सकने वाले अनन्त बिन्दुओं से प्रस्तुत किया जा सकता है। श्रेणी:गणित *. रुबिक घन समूह से रुबिक घन प्रहस्तन। गणित में समूह कुछ अवयवों वाले उस समुच्चय को कहते हैं जिसमें कोई द्विचर संक्रिया इस तरह से परिभाषित हो जो इसके किन्हीं दो अवयवों के संयुग्म से हमें तीसरा अवयव दे और वह तीसरा अवयव चार प्रतिबंधों को संतुष्ट करे। इन प्रतिबंधों को अभिगृहीत कहा जाता है जो निम्न हैं: संवरक, साहचर्यता, तत्समकता और व्युत्क्रमणीयता। समूह का सबसे प्रचलित उदाहरण जोड़ द्विचर संक्रिया के साथ पूर्णांकों का समुच्चय है; किन्हीं दो पूर्णांकों को जोड़ने पर भी एक पूर्णांक प्राप्त होता है। समूह अभिगृहीतों का अमूर्त सूत्रिकरण, किसी विशिष्ट समूह अथवा इसकी संक्रिया के मूर्त प्राकृतिक रूप का पृथकरण है। इस प्रकार अमूर्त बीजगणित और इससे परे यह व्यापक गणितीय महत्त्व रखता है। गणित के भीतर और बाहर कई क्षेत्रों में समूहों की सर्वव्यापीता ने उन्हें समकालीन गणित का एक केंद्रीय आयोजन सिद्धांत बना दिया। समूह समरूपता की धारणा के साथ एक गहरी रिश्तेदारी साझा करते हैं। उदाहरण के लिए, एक समरूपता समूह एक ज्यामितीय ऑब्जेक्ट की समरूपता विशेषताओं को सांकेतिक शब्दों में बदलता है: यहां समूह उन परिवर्तनों का समूह हैं जो वस्तु को अपरिवर्तित छोड़ देते हैं और यहां इस तरह के दो परिवर्तनों को एक के बाद एक प्रदर्शन करना द्विचर संक्रिया हैं। समूह की अवधारणा 18वीं शताब्दी में एवारिस्ट गेलोआ (Évariste Galois) के बहुपद समीकरणों के अध्ययन से उठी। संख्या सिद्धान्त और ज्यामिति जैसे अन्य क्षेत्रों से योगदान के बाद, समूह धारणा को सामान्यीकृत और दृढ़तापूर्वक 1870 के आसपास स्थापित किया गया था। आधुनिक समूह सिद्धांत- एक सक्रिय गणितीय अनुशासन - समूहों के स्वतंत्र रूप से अध्ययन पर समर्पित है। .

वास्तविक संख्या और समूह (गणितशास्त्र) के बीच समानता

वास्तविक संख्या और समूह (गणितशास्त्र) आम में एक बात है (यूनियनपीडिया में): गणित

गणित

पुणे में आर्यभट की मूर्ति ४७६-५५० गणित ऐसी विद्याओं का समूह है जो संख्याओं, मात्राओं, परिमाणों, रूपों और उनके आपसी रिश्तों, गुण, स्वभाव इत्यादि का अध्ययन करती हैं। गणित एक अमूर्त या निराकार (abstract) और निगमनात्मक प्रणाली है। गणित की कई शाखाएँ हैं: अंकगणित, रेखागणित, त्रिकोणमिति, सांख्यिकी, बीजगणित, कलन, इत्यादि। गणित में अभ्यस्त व्यक्ति या खोज करने वाले वैज्ञानिक को गणितज्ञ कहते हैं। बीसवीं शताब्दी के प्रख्यात ब्रिटिश गणितज्ञ और दार्शनिक बर्टेंड रसेल के अनुसार ‘‘गणित को एक ऐसे विषय के रूप में परिभाषित किया जा सकता है जिसमें हम जानते ही नहीं कि हम क्या कह रहे हैं, न ही हमें यह पता होता है कि जो हम कह रहे हैं वह सत्य भी है या नहीं।’’ गणित कुछ अमूर्त धारणाओं एवं नियमों का संकलन मात्र ही नहीं है, बल्कि दैनंदिन जीवन का मूलाधार है। .

गणित और वास्तविक संख्या · गणित और समूह (गणितशास्त्र) · और देखें »

सूची के ऊपर निम्न सवालों के जवाब

वास्तविक संख्या और समूह (गणितशास्त्र) के बीच तुलना

वास्तविक संख्या 7 संबंध है और समूह (गणितशास्त्र) 12 है। वे आम 1 में है, समानता सूचकांक 5.26% है = 1 / (7 + 12)।

संदर्भ

यह लेख वास्तविक संख्या और समूह (गणितशास्त्र) के बीच संबंध को दर्शाता है। जानकारी निकाला गया था, जिसमें से एक लेख का उपयोग करने के लिए, कृपया देखें: