हम Google Play स्टोर पर Unionpedia ऐप को पुनर्स्थापित करने के लिए काम कर रहे हैं
🌟हमने बेहतर नेविगेशन के लिए अपने डिज़ाइन को सरल बनाया!
Instagram Facebook X LinkedIn

द्रव और भौतिक शास्त्र

शॉर्टकट: मतभेद, समानता, समानता गुणांक, संदर्भ

द्रव और भौतिक शास्त्र के बीच अंतर

द्रव vs. भौतिक शास्त्र

द्रव का कोई निश्चित आकार नहीं होता। द्रव जिस पात्र में रखा जाता है उसी का आकार ग्रहण कर लेता है। प्रकृति में सभी रासायनिक पदार्थ साधारणत: ठोस, द्रव और गैस तथा प्लाज्मा - इन चार अवस्थाओं में पाए जाते हैं। द्रव और गैस प्रवाहित हो सकते हैं, किंतु ठोस प्रवाहित नहीं होता। लचीले ठोस पदार्थों में आयतन अथवा आकार को विकृत करने से प्रतिबल उत्पन्न होता है। अल्प विकृतियों के लिए विकृति और प्रतिबल परस्पर समानुपाती होते हैं। इस गुण के कारण लचीले ठोस एक निश्चित मान तक के बाहरी बलों को सँभालने की क्षमता रखते हैं। प्रवाह का गुण होने के कारण द्रवों और गैसों को तरल पदार्थ (fluid) कहा जाता है। ये पदार्थ कर्तन (shear) बलों को सँभालने में अक्षम होते हैं और गुरुत्वाकर्षण के प्रभाव के कारण प्रवाहित होकर जिस बरतन में रखे रहते हैं, उसी का आकार धारण कर लेते हैं। ठोस और तरल का यांत्रिक भेद बहुत स्पष्ट नहीं है। बहुत से पदार्थ, विशेषत: उच्च कोटि के बहुलक (polymer) के यांत्रिक गुण, श्यान तरल (viscous fluid) और लचीले ठोस के गुणों के मध्यवर्ती होते हैं। प्रत्येक पदार्थ के लिए एक ऐसा क्रांतिक ताप (critical temperature) पाया जाता है, जिससे अधिक होने पर पदार्थ केवल तरल अवस्था में रह सकता है। क्रांतिक ताप पर पदार्थ की द्रव और गैस अवस्था में विशेष अंतर नहीं रह जाता। इससे नीचे के प्रत्येक ताप पर द्रव के साथ उसका कुछ वाष्प भी उपस्थित रहता है और इस वाष्प का कुछ निश्चित दबाव भी होता है। इस दबाव को वाष्प दबाव कहते हैं। प्रत्येक ताप पर वाष्प दबाव का अधिकतम मान निश्चित होता है। इस अधिकतम दबाव को संपृक्त-वाष्प-दबाव के बराबर अथवा उससे अधिक हो, तो द्रव स्थायी रहता है। यदि ऊपरी दबाव द्रव के संपृक्तवाष्प-दबाव से कम हो, तो द्रव अस्थायी होता है। संपृक्त-वाष्प-दबाव ताप के बढ़ने से बढ़ता है। जिस ताप पर द्रव का संपृक्त-वाष्प-दबाव बाहरी वातावरण के दबाव के बराबर हो जाता है, उसपर द्रव बहुत तेजी से वाष्पित होने लगता है। इस ताप को द्रव का क्वथनांक (boiling point) कहते हैं। यदि बाहरी दबाव सर्वथा स्थायी हो तो क्वथनांक से नीचे द्रव स्थायी रहता है। क्वथनांक पर पहुँचने पर यह खौलने लगता है। इस दशा में यह ताप का शोषण करके द्रव अवस्था से गैस अवस्था में परिवर्तित होने लगता है। क्वथनांक पर द्रव के इकाई द्रव्यमान को द्रव से पूर्णत: गैस में परिवर्तित करने के लिए जितने कैलोरी ऊष्मा की आवश्यकता होती है, उसे द्रव के वाष्पीभवन की गुप्त ऊष्मा कहते हैं। विभिन्न द्रव पदार्थों के लिए इसका मान भिन्न होता है। एक नियत दबाव पर ठोस और द्रव दोनों रूप साथ साथ एक निश्चित ताप पर पाए जा सकते हैं। यह ताप द्रव का हिमबिंदु या ठोस का द्रवणांक कहलाता है। द्रवणांक पर पदार्थ के इकाई द्रव्यमान को ठोस से पूर्णत: द्रव में परिवर्तित करने में जितनी ऊष्मा की आवश्यकता होती है, उसे ठोस के गलन की गुप्त ऊष्मा कहते हैं। अक्रिस्टली पदार्थों के लिए कोई नियत गलनांक नहीं पाया जाता। वे गरम करने पर धीरे धीरे मुलायम होते जाते हैं और फिर द्रव अवस्था में आ जाते हैं। काँच तथा काँच जैसे अन्य पदार्थ इसी प्रकार का व्यवहार करते हैं। एक नियत ताप और नियत दबाव पर प्रत्येक द्रव्य की तीनों अवस्थाएँ एक साथ विद्यमान रह सकती हैं। दबाव और ताप के बीच खीचें गए आरेख (diagram) में ये नियत ताप और दबाव एक बिंदु द्वारा प्रदर्शित किए जाते हैं। इस बिंदु को द्रव का त्रिक् बिंदु (triple point) कहते हैं। त्रिक् विंदु की अपेक्षा निम्न दाबों पर द्रव अस्थायी रहता है। यदि किसी ठोस को त्रिक् विंदु की अपेक्षा निम्न दबाव पर रखकर गरम किया जाए तो वह बिना द्रव बने ही वाष्प में परिवर्तित हो जाता है, अर्थात् ऊर्ध्वपातित (sublime) हो जाता है। द्रव के मुक्त तल में, जो उस द्रव के वाष्प या सामान्य वायु के संपर्क में रहता है, एक विशेष गुण पाया जाता है, जिसके कारण यह तल तनी हुई महीन झिल्ली जैसा व्यवहार करता है। इस गुण को पृष्ठ तनाव (surface tension) कहते हैं। पृष्ठ तनाव के कारण द्रव के पृष्ठ का क्षेत्रफल यथासंभव न्यूनतम होता है। किसी दिए आयतन के लिए सबसे कम क्षेत्रफल एक गोले का होता है। अत: ऐसी स्थितियों में जब कि बाहरी बल नगण्य माने जा सकते हों द्रव की बूँदे गोल होती हैं। जब कोई द्रव किसी ठोस, या अन्य किसी अमिश्रय द्रव, के संपर्क में आता है तो भी संपर्क तल पर तनाव उत्पन्न होता है। साधारणत: कोई भी पदार्थ केवल एक ही प्रकार के द्रव रूप में प्राप्त होता है, किंतु इसके कुछ अपवाद भी मिलते हैं, जैसे हीलियम गैस को द्रवित करके दो प्रकार के हीलियम द्रव प्राप्त किए जा सकते हैं। उसी प्रकार पैरा-ऐज़ॉक्सी-ऐनिसोल (Para-azoxy-anisole) प्रकाशत: विषमदैशिक (anisotropic) द्रव के रूप में, क्रिस्टलीय अवस्था में तथा सामान्य द्रव के रूप में भी प्राप्त हो सकता है। . भौतिकी के अन्तर्गत बहुत से प्राकृतिक विज्ञान आते हैं भौतिक शास्त्र अथवा भौतिकी, प्रकृति विज्ञान की एक विशाल शाखा है। भौतिकी को परिभाषित करना कठिन है। कुछ विद्वानों के मतानुसार यह ऊर्जा विषयक विज्ञान है और इसमें ऊर्जा के रूपांतरण तथा उसके द्रव्य संबन्धों की विवेचना की जाती है। इसके द्वारा प्राकृत जगत और उसकी आन्तरिक क्रियाओं का अध्ययन किया जाता है। स्थान, काल, गति, द्रव्य, विद्युत, प्रकाश, ऊष्मा तथा ध्वनि इत्यादि अनेक विषय इसकी परिधि में आते हैं। यह विज्ञान का एक प्रमुख विभाग है। इसके सिद्धांत समूचे विज्ञान में मान्य हैं और विज्ञान के प्रत्येक अंग में लागू होते हैं। इसका क्षेत्र विस्तृत है और इसकी सीमा निर्धारित करना अति दुष्कर है। सभी वैज्ञानिक विषय अल्पाधिक मात्रा में इसके अंतर्गत आ जाते हैं। विज्ञान की अन्य शाखायें या तो सीधे ही भौतिक पर आधारित हैं, अथवा इनके तथ्यों को इसके मूल सिद्धांतों से संबद्ध करने का प्रयत्न किया जाता है। भौतिकी का महत्व इसलिये भी अधिक है कि अभियांत्रिकी तथा शिल्पविज्ञान की जन्मदात्री होने के नाते यह इस युग के अखिल सामाजिक एवं आर्थिक विकास की मूल प्रेरक है। बहुत पहले इसको दर्शन शास्त्र का अंग मानकर नैचुरल फिलॉसोफी या प्राकृतिक दर्शनशास्त्र कहते थे, किंतु १८७० ईस्वी के लगभग इसको वर्तमान नाम भौतिकी या फिजिक्स द्वारा संबोधित करने लगे। धीरे-धीरे यह विज्ञान उन्नति करता गया और इस समय तो इसके विकास की तीव्र गति देखकर, अग्रगण्य भौतिक विज्ञानियों को भी आश्चर्य हो रहा है। धीरे-धीरे इससे अनेक महत्वपूर्ण शाखाओं की उत्पत्ति हुई, जैसे रासायनिक भौतिकी, तारा भौतिकी, जीवभौतिकी, भूभौतिकी, नाभिकीय भौतिकी, आकाशीय भौतिकी इत्यादि। भौतिकी का मुख्य सिद्धांत "उर्जा संरक्षण का नियम" है। इसके अनुसार किसी भी द्रव्यसमुदाय की ऊर्जा की मात्रा स्थिर होती है। समुदाय की आंतरिक क्रियाओं द्वारा इस मात्रा को घटाना या बढ़ाना संभव नहीं। ऊर्जा के अनेक रूप होते हैं और उसका रूपांतरण हो सकता है, किंतु उसकी मात्रा में किसी प्रकार परिवर्तन करना संभव नहीं हो सकता। आइंस्टाइन के सापेक्षिकता सिद्धांत के अनुसार द्रव्यमान भी उर्जा में बदला जा सकता है। इस प्रकार ऊर्जा संरक्षण और द्रव्यमान संरक्षण दोनों सिद्धांतों का समन्वय हो जाता है और इस सिद्धांत के द्वारा भौतिकी और रसायन एक दूसरे से संबद्ध हो जाते हैं। .

द्रव और भौतिक शास्त्र के बीच समानता

द्रव और भौतिक शास्त्र आम में 0 बातें हैं (यूनियनपीडिया में)।

सूची के ऊपर निम्न सवालों के जवाब

द्रव और भौतिक शास्त्र के बीच तुलना

द्रव 8 संबंध है और भौतिक शास्त्र 25 है। वे आम 0 में है, समानता सूचकांक 0.00% है = 0 / (8 + 25)।

संदर्भ

यह लेख द्रव और भौतिक शास्त्र के बीच संबंध को दर्शाता है। जानकारी निकाला गया था, जिसमें से एक लेख का उपयोग करने के लिए, कृपया देखें: