लोगो
यूनियनपीडिया
संचार
Google Play पर पाएं
नई! अपने एंड्रॉयड डिवाइस पर डाउनलोड यूनियनपीडिया!
मुक्त
ब्राउज़र की तुलना में तेजी से पहुँच!
 

गुरुत्वाकर्षक लेंस और सामान्य आपेक्षिकता

शॉर्टकट: मतभेद, समानता, समानता गुणांक, संदर्भ

गुरुत्वाकर्षक लेंस और सामान्य आपेक्षिकता के बीच अंतर

गुरुत्वाकर्षक लेंस vs. सामान्य आपेक्षिकता

एक गैलेक्सी के आगे एक बड़ा ब्लैक होल (काला छिद्र) है - जैसे-जैसे गैलेक्सी उसके पीछे से निकलती है, उसका प्रकाश ब्लैक होल के गुरुत्वाकर्षक लेंस के प्रभाव से मुड़ता है गुरुत्वाकर्षक लेंस अंतरिक्ष में किसी बड़ी वस्तु के उस प्रभाव को कहते हैं जिसमें वह वस्तु अपने पास से गुज़रती हुई रोशनी की किरणों को मोड़कर एक लेंस जैसा काम करती है। भौतिकी (फिज़िक्स) के सामान्य सापेक्षता सिद्धांत की वजह से कोई भी वस्तु अपने इर्द-गिर्द के व्योम ("दिक्-काल" या स्पेस-टाइम) को मोड़ देती है और बड़ी वस्तुओं में यह मुड़ाव अधिक होता है। जिस तरह चश्मे, दूरबीन या सूक्ष्मबीन के मुड़े हुए शीशे से गुज़रता हुआ प्रकाश भी मुड़ जाता है, उसी तरह गुरुत्वाकर्षक लेंस से गुज़रता हुआ प्रकाश भी मुड़ जाता है। . सामान्य आपेक्षिकता सिद्धांत या सामान्य सापेक्षता सिद्धांत, जिसे अंग्रेजी में "जॅनॅरल थिओरी ऑफ़ रॅलॅटिविटि" कहते हैं, एक वैज्ञानिक सिद्धांत है जो कहता है कि ब्रह्माण्ड में किसी भी वस्तु की तरफ़ जो गुरुत्वाकर्षण का खिंचाव देखा जाता है उसका असली कारण है कि हर वस्तु अपने मान और आकार के अनुसार अपने इर्द-गिर्द के दिक्-काल (स्पेस-टाइम) में मरोड़ पैदा कर देती है। बरसों के अध्ययन के बाद जब १९१६ में अल्बर्ट आइंस्टीन ने इस सिद्धांत की घोषणा की तो विज्ञान की दुनिया में तहलका मच गया और ढाई-सौ साल से क़ायम आइज़क न्यूटन द्वारा १६८७ में घोषित ब्रह्माण्ड का नज़रिया हमेशा के लिए उलट दिया गया। भौतिक शास्त्र पर इसका इतना गहरा प्रभाव पड़ा कि लोग आधुनिक भौतिकी (माडर्न फ़िज़िक्स) को शास्त्रीय भौतिकी (क्लासिकल फ़िज़िक्स) से अलग विषय बताने लगे और अल्बर्ट आइंस्टीन को आधुनिक भौतिकी का पिता माना जाने लगा। .

गुरुत्वाकर्षक लेंस और सामान्य आपेक्षिकता के बीच समानता

गुरुत्वाकर्षक लेंस और सामान्य आपेक्षिकता आम में 8 बातें हैं (यूनियनपीडिया में): दिक्-काल, दूरदर्शी, भौतिक शास्त्र, रूसी भाषा, लेंस, सूक्ष्मदर्शी, ओरॅस्त ख़्वोलसन, अल्बर्ट आइंस्टीन

दिक्-काल

दिक्-काल या स्पेस-टाइम (spacetime) की संकल्पना, अल्बर्ट आइंस्टीन द्वारा उनके सापेक्षता के सिद्धांत में दी गई थी| उनके अनुसार तीन दिशाओं की तरह, समय भी एक आयाम है और भौतिकी में इन्हें एक साथ चार आयामों के रूप में देखना चाहिए। उन्होंने कहा कि वास्तव में ब्रह्माण्ड की सभी चीज़ें इस चार-आयामी दिक्-काल में रहती हैं। उन्होंने यह भी कहा कि कभी-कभी ऐसी परिस्थितियाँ बन जाती हैं जब भिन्न वस्तुओं को इन सभी-आयामों का अनुभव अलग-अलग प्रतीत हो। दिक् (space) और काल (time) का संबध हमारे नित्य व्यवहार में इतना अधिक आता है कि इनके विषय में कुछ अधूरी सी किंतु दृढ़ धारणाएँ हमारे मन में बचपन से ही होना स्वाभाविक है। कवियों ने दिक्‌ और काल की गंभीर, विशाल तथा सुंदर कल्पनाओं का वर्णन किया है। दर्शन में और पाश्चात्य मनोविज्ञान में भी इनके विषय में पुरातन काल से सोच विचार होता आ रहा है। कणाद (३०० ई. पू.) के वैशेषिक दर्शन में आकाश, दिक्‌ और काल की धारणाएँ सुस्पष्ट दी गई हैं और इनके गुणों का भी वर्णन किया गया है। इंद्रियजन्य अनुभवों से जो ज्ञान मिलता है उसमें दिक्‌ और काल का संबंध अवश्य ही होता है। इस ज्ञान की यदि वास्तविकता समझा जाए तो दिक्‌ और काल वस्तविकता से अलग नहीं हो सकते। प्रत्येक दार्शनिक संप्रदाय ने वस्तविकता, दिक्‌ और काल, इनके परस्पर संबंधों की अपनी अपनी धारणाएँ दी हैं, जिनमें ऐकमत्य नहीं है। गणित में भी दिक्‌ और काल का अप्रत्यक्ष रीति से संबंध आता है। अत: प्रतिष्ठित भौतिकी (क्लासिकल फिजिक्स) का विकास इन्हीं धारणाओं पर निर्भर रहा। भौतिकी के कुछ प्रायोगिक फल जब इन धारणाओं से विसंगत दिखाई देने लगे, तब ये धारणाएँ विचलित होने लगीं एवं आपेक्षितावाद ने दिक्‌ और काल का नया स्वरूप स्थापित किया, जो अनेक प्रयोगों द्वारा प्रमाणित और फलत: अब सर्वसम्मत हो चुका है। दिक्‌ तथा काल का यह नया स्वरूप केवल भिन्न ही नहीं वरन्‌ (हमारी इनके विषय की व्यावहारिक कल्पनाओं के कारण) समझने में भी अत्यंत कठिन है, क्योंकि इसके प्रतिपादन में विशिष्ट गणित का उपयोग आवश्यक होता है। अत: जहाँ-जहाँ दिक्‌ तथा काल संबंध आता है उसका स्पष्टीकरण पहले स्थूल दृष्टि से, तत्पश्चात्‌ सूक्ष्म दृष्टि से और अंत में भौतिकी की दृष्टि से करना अधिक सरल होगा। इंद्रियजन्य अनुभवों से जो दिक्‌ के गुणों का प्रत्यय आता है, उससे दिक्‌ के विभिन्न प्रकार माने जा सकते हैं। अनुभवों के बुद्धि पर जो परिणाम होते हैं उनका पृथक्करण करके धारणाएँ बनती हैं। इस प्रकार स्वानुभव से दिक्‌ की जो धारणा बनती है उसे "स्व-दिक्‌' अथवा "व्यक्तिगत दिक्‌' कहा जाता है। इंद्रियजन्य अनुभवों में अनेक अनुभव समस्त व्यक्तियों के लिए समान होते हैं और ऐसे अनुभव जिस घटना से मिलते हैं, उसे "वास्तव' कहा जाता है। वास्तव घटनाओं के समुदायों से "वास्तविकता' की धारणा बनती है। इंद्रियों से दृष्टि, स्पर्श, ध्वनि, रस और गंध के अनुभव मिलते हैं, किंतु ये अनुभव सर्वदा विश्वास के योग्य होते हैं, ऐसा नहीं है। प्रकाशकीय संभ्रम तो सुप्रसिद्ध हैं ही। स्पर्श के भी संभ्रम व्यवहार में नित्य प्रतीत होते हैं, जैसे दो दाँतों के बीच की खोह जीभ को जितनी लगती है उससे कम छोटी उँगली को लगती है। प्राय: ऐसा ही प्रकार सब तरह के इंद्रियजन्य अनुभवों का होता है। अत: इन अपूर्ण अनुभवों से व्यक्तिगत दिक्‌ की जो धारणा बनती है वह भ्रममूलक ही होती है। मापनदंड तथा अन्य उचित यंत्रों की सहायता से इंद्रियों की मर्यादित ग्राहकता बढ़ाई जा सकती है और इस प्रकार अनेक घटनाओं का भ्रमनिरसन हो सकता है। प्रयोगों में मापन करके दिक्‌ की जो धारणा होती है उसे "भौतिक दिक्‌ कहा जाता है। मापन के लिए मापनदंड का उपयोग किया जाता है। अनुभवों में दिक्‌ का संबंध चार प्रकार से आता है और इन चारों प्रकारों पर विचार करके दिक्‌ के गुणों की व्यावहारिक कल्पनाएँ बनती हैं। किसी वस्तु के स्थल का निर्देश जब वहाँ कहकर किया जाता है, तब दिक्‌ के एक स्वरूप की कल्पना आती है और इसका अर्थ यह भी माना जाता है कि दिक्‌ का अस्तित्व (अनुभवों से) स्वतंत्र है। किसी वस्तु के स्थल का निर्देश अन्य वस्तु के "सापेक्ष' करने पर दिक्‌ की "सापेक्ष स्थिति' में दूसरा स्वरूप दिखई देता है। दिक्‌ का तीसरा स्वरूप वस्तुओं के "आकार' से मिलता है, जिससे दिक्‌ की विभाज्यता की भी कल्पना की जा सकती है। आकाश की ओर देखने से दिक्‌ की "विशालता' (अथवा अनंतता) का चौथा स्वरूप दिखाई देता है। इन चार प्रकार के स्वरूपों से ही प्राय: दिक्‌ के संबध में व्यावहारिक धारणाएँ बनती हैं और दिक्‌ के गुण भी सूचित होते हैं। घटनाओं से प्राप्त इंद्रियजन्य अनुभवों का विचर किया जाए तो उनके दो प्रकार होते हैं। घटनाओं के स्थानभेद से दिक्‌ की कल्पना होती है और उनके क्रम-भेद से काल की कल्पना होती है। इस प्रकार दिक्‌ और काल हमारी विचारधारा में संदिग्ध रूप से प्रवेश करते हैं। दिक्‌ जैसा ही काल भी व्यक्तिगत (अथवा स्व-काल) होता है और प्रत्येक व्यक्ति की कालगणना स्वतंत्र तथा स्वेच्छ होती है। इतना ही नहीं, इस स्व-काल की गणना में भी परिवर्तन होता है और वह व्यक्ति के स्वास्थ्य, अवस्था इत्यादि स्थितियों पर निर्भर करता है, जैसे, किसी कार्य में मनुष्य मग्न हो तो काल तेजी से कटता है। अत: व्यक्तिगत अथवा स्व-काल विश्वास योग्य नहीं रहता। किसी प्राकृतिक घटना से - दिन और रात से - जो काल का मापन होगा वह व्यक्तिगत नहीं रहेगा और सब लोगों के लिए समान होगा। अत: ऐसे काल को सार्वजनिक काल कहा जाता है। दिन और रात काल के स्थूल विभाग हैं। इनके छोटे विभाग किए जाएँ तो व्यवहार में कालमापन के लिए वे अधिक उपयुक्त होते हैं। इसलिए प्रहर, घटिका, पल विपल अथवा घंटा, मिनट, सेकंड इत्यादि विभाग किए गए। सामान्यत: काल का मापन घड़ी से होता है। दिक्‌ की भाँति काल के भी चार स्वरूप व्यवहार में दिखाई देते हैं। किसी घटना अथवा अनुभव से "कब?' प्रश्न उपस्थित होता है और इसका दिक्‌ विषयक "कहाँ' से साम्य है। इस कल्पना से काल का अस्तित्व (अनुभवों से) स्वतंत्र समझा जाता है। किसी घटना के काल के सापेक्ष दूसरी घटना का वर्णन करते समय काल का सापेक्ष स्वरूप दिखाई देता है। दो घटनाओं के बीच के काल से काल का जो स्वरूप दिखाई देता है वह दिक्‌ के आकार से समान है। वैसे ही काल के अनादि, अनंत इत्यादि विशेषणों से काल की विशालता दिखाई दती है। दिक्‌ तथा काल के चारों स्वरूपों को, या गुणों को कहिए, मिलाकर विचार करने पर इनके विषय में हमारी जो धारणाएँ बनती हैं उनको "स्व' या "व्यक्तिगत' अथवा "मनोवैज्ञानिक' दिक्‌ और काल कहा जाता है। दिक्‌ तथा काल की धारणाओं को निश्चित रूप देने के लिए उनका मापन करने के साधन आवश्यक होते हैं। दिक्‌ के मापन के लिए दृढ़ पदार्थों के दंड, औजार तथा यंत्र उपयोग में लाए जाते हैं। इन उपकरणों से लंबाई, कोण, क्षेत्रफल, आयतन इत्यादि वस्तुओं के गुणों के मापन होते है। इन मापनों के समय बिंदु, रेखा, समतल इत्यादि की धारणाएँ बनती जाती हैं। जब अनेक पुनरावृत्तियों से ये धारणाएँ दृढ़ हो जाती हैं, तब बिंदु, रेखा, समतल इत्यादि का स्थान मौलिक होता है और भौतिक वस्तुएँ इन धारणाओं से दूर हो जाती हैं। अब इन धारणाओं की और यूक्लिडीय ज्यामिति की मौलिक धारणाओं की समानता स्पष्ट होगी। दृढ़ वस्तुओं को समाविष्ट करके दिक्‌ के, अथवा वस्तुओं के, मापन से दिक्‌ की जो धारणा होती है उसे ज्यामितीय अथवा यूक्लिडीय दिक्‌ कहा जाता है। यह स्पष्ट है कि दिक्‌ की इस धारणा से उसके जो गुण समझे जाते हैं वे केवल यूक्लिडीय ज्यामिति की परिभाषाओं, स्वयंसिद्ध और कल्पनाओं के ऊपर ही निर्भर होते हैं। दिक्‌ की हमारी व्यावहारिक धारणा और मापन से निश्चित की हुई यह ज्यामितीय धारणा, क्रमश: हमारी स्थूल दृष्टि और सूक्ष्म दृष्टि के स्वरूप हैं। यूक्लिडीय ज्यामिति पर निर्धारित दिक्‌ की यह धारणा यद्यपि स्वाभाविक दिखाई देती होगी, तथापि इसका विश्लेषण करने की आवश्यता है। यूक्लिडीय ज्यामिति में कुछ परिभाषाएँ (जैसे बिंदु, रेखा, तल इत्यादि) तथा कुछ स्वयंसिद्ध तथ्य दिए हुए हैं और इनका तार्किक दृष्टि से विकास किया गया है। ये धारणाएँ केवल काल्पनिक और स्वतंत्र हैं। थोड़ा ही विचार करने पर यह स्पष्ट होगा कि यूक्लिडीय ज्यामिति का व्यवहार की वस्तुओं से कोई भी वास्तविक संबंध नहीं है। अपनी मूल कल्पनाओं को विकसित करते समय उनका परस्पर तर्कसंगत संबंध रखना और एक "काल्पनिक' गणित शास्त्र का निर्मांण करना, इतना ही इस ज्यामिति का मूल उद्देश्य था। इस उद्देश्य में यह ज्यामिति अत्यंत ही सफल रही। इस ज्यामिति का और भी विस्तार करके उसे "व्यावहारिक' बनाने के लिए "आदर्श दृढ़ वस्तु' की परिभाषा यह है कि इसके दो बिंदुओं का अंतर किसी भी परिस्थिति में उतना ही रहता है। मापन दंड अथवा अन्य औजारों का उपयोग इसी विशेषता पर निर्भर करता है। वस्तुत: इस प्रकार "आदर्श दृढ़ वस्तु' को समाविष्ट करने पर यूक्लिडीय ज्यामिति का स्वरूप बदल जाता है और उसको अब हम भौतिकी का एक विभाग समझ सकते हैं। किंतु व्यवहार में यूक्लिडीय ज्यामिति का यह परिवर्तन इस दृष्टि से नहीं देखा जाता। मापन करने पर व्यावहारिक वस्तुओं के मापन के लिए यूक्लिडीय ज्यामिति के सिद्धांत यथार्थ दिखाई देते हैं। इसलिए यूक्लिडीय ज्यामिति को "वास्तविक' समझा जाने लगा। व्यावहारिक अनुभव और यूक्लिडीय ज्यामिति का दृष्टि से न्यूटन ने अपनी दिक्‌ और काल की धारणाएँ निश्चित रूप से प्रस्तुत की और प्रतिष्ठित भौतिकी का विकास प्राय: वर्तमान शताब्दी के प्रारंभ तक इन्हीं धारणाओं पर निर्भर रहा। न्यूटन ने दिक्‌ को स्वतंत्र सत्ता समझकर उसके गुण भी दिए। न्यूटन के अनुसार दिक्‌ के गुण सर्व दिशाओं में तथा सर्व बिंदुओं पर समान ही होते हैं, अर्थात्‌ दिक्‌ समदिक्‌, समांग तथा एक समान है। अत: पदार्थों के गुण दिक्‌ में सभी स्थानों पर समान ही होते हैं। दिक्‌ अनंत है और न्यूटन के दिक्‌ में लंबाई, काल तथा गति से अबाधित रहती है। काल के विषय में भी न्यूटन ने अपनी धारणा दी है और यह धारणा भी उस समय के भौतिकी के विकास के अनुसार ही थी। न्यूटन के अनुसार काल भी एक स्वतंत्र सत्ता है। काल का विशेष गुण यह है कि वह समान गति से सतत और सर्वत्र "बहता' है और किसी भी परिस्थिति का उसके ऊपर कोई भी परिणाम नहीं होता। काल भी अनंत है। सारांश में, न्यूटन के अनुसार दिक्‌ तथा काल दोनों ही स्वतंत्र और निरपेक्ष सत्ताएँ होती हैं। न्यूटन आदि की यांत्रिकी इन्हीं धारणाओं पर निर्भर थी। यांत्रिकी में गति और त्वरण, इन दोनों के लिए दिक्‌ और काल को निश्चित रूप देना आवश्यक था और उस समय तो इन धारणाओं में कोई भी त्रुटि दिखाई नहीं देती थी। वैसे ही भौतिकी में न्यूटन का इतना प्रभाव था कि इन धारणाओं पर शंका प्रदर्शित करना संभव नहीं था। बोल्याई, लोबातचेवस्की, रीमान इत्यादि गणितज्ञों ने यह सिद्ध किया कि यूक्लिडीय ज्यामिति के कुछ स्वयंतथ्यों में उचित परिवर्तन करने पर अयूक्लिडीय ज्यामितियों का निर्माण हो सकता है। यद्यपि अयूक्लिडीय ज्यामितियों के अनेक सिद्धांत यूक्लिडीय ज्यामिति के सिद्धांतों से भिन्न होते हैं, तथापि वे अयोग्य नहीं होते हैं। विशेषत: रीमान के अयूक्लिडीय ज्यामिति से यह स्पष्ट हुआ कि यूक्लिडीय ज्यामिति ही केवल मौलिक नहीं है। यद्यपि अयूक्लिडीय ज्यामितियाँ कल्पना करने में कठिन होती हैं, तथापि तर्कसम्मत होने से उनके फल अत्यंत रोचक तथा उपयुक्त होते हैं। इनमें तीन से अधिक विमितियों के दिक्‌ की (जिसे हम "अति दिक्‌' कह सकते हैं) जो कल्पना होती है, उस दिक्‌ की वक्रता की कल्पना विशेष रूप से उपयुक्त हुई। .

गुरुत्वाकर्षक लेंस और दिक्-काल · दिक्-काल और सामान्य आपेक्षिकता · और देखें »

दूरदर्शी

न्यूटनीय दूरदर्शी का आरेख दूरदर्शी वह प्रकाशीय उपकरण है जिसका प्रयोग दूर स्थित वस्तुओं को देख्नने के लिये किया जाता है। दूरदर्शी से सामान्यत: लोग प्रकाशीय दूरदर्शी का अर्थ ग्रहण करते हैं, परन्तु दूरदर्शी विद्युतचुंबकीय वर्णक्रम के अन्य भागों मै भी काम करता है जैसे X-रे दूरदर्शी जो कि X-रे के प्रति संवेदनशील होता है, रेडियो दूरदर्शी जो कि अधिक तरंगदैर्घ्य की विद्युत चुंबकीय तरंगे ग्रहण करता है। दूरदर्शी साधारणतया उस प्रकाशीय तंत्र (optical system) को कहते हैं जिससे देखने पर दूर की वस्तुएँ बड़े आकार की और स्पष्ट दिखाई देती हैं, अथवा जिसकी सहायता से दूरवर्ती वस्तुओं के साधारण और वर्णक्रमचित्र (spectrograms) प्राप्त किए जाते हैं। दूरवर्ती वस्तुओं का ज्ञान प्राप्त करने के लिए आजकल रेडियो तरंगों का भी उपयोग किया जाने लगा है। इस प्रकार का यंत्र रेडियो दूरदर्शी (radio telescope) कहलाता है। बोलचाल की भाषा में दूरदर्शी को दूरबीन भी कहते हैं। दूरबीन के आविष्कार ने मनुष्य की सीमित दृष्टि को अत्यधिक विस्तृत बना दिया है। ज्योतिर्विद के लिए दूरदर्शी की उपलब्धि अंधे व्यक्ति को मिली आँखों के सदृश वरदान सिद्ध हुई है। इसकी सहायता से उसने विश्व के उन रहस्यमय ज्योतिष्पिंडों तक का साक्षात्कार किया है जिन्हें हम सर्पिल नीहारिकाएँ (spiral nebulae) कहते हैं। ये नीहारिकाएँ हमसे करोड़ों प्रकाशवर्ष की दूरी पर हैं। आधुनिक ज्योतिर्विज्ञान (astronomy) और ताराभौतिकी (astrophysics) के विकास में दूरदर्शी का महत्वपूर्ण योग है। दूरदर्शी ने एक ओर जहाँ मनुष्य की दृष्टि को विस्तृत बनाया है, वहाँ दूसरी ओर उसने मानव को उन भौतिक तथ्यों और नियमों को समझने में सहायता भी दी है जो भौतिक विश्व के गत्यात्मक संतुलन (dynamic equilibirium) के आधार हैं। .

गुरुत्वाकर्षक लेंस और दूरदर्शी · दूरदर्शी और सामान्य आपेक्षिकता · और देखें »

भौतिक शास्त्र

भौतिकी के अन्तर्गत बहुत से प्राकृतिक विज्ञान आते हैं भौतिक शास्त्र अथवा भौतिकी, प्रकृति विज्ञान की एक विशाल शाखा है। भौतिकी को परिभाषित करना कठिन है। कुछ विद्वानों के मतानुसार यह ऊर्जा विषयक विज्ञान है और इसमें ऊर्जा के रूपांतरण तथा उसके द्रव्य संबन्धों की विवेचना की जाती है। इसके द्वारा प्राकृत जगत और उसकी आन्तरिक क्रियाओं का अध्ययन किया जाता है। स्थान, काल, गति, द्रव्य, विद्युत, प्रकाश, ऊष्मा तथा ध्वनि इत्यादि अनेक विषय इसकी परिधि में आते हैं। यह विज्ञान का एक प्रमुख विभाग है। इसके सिद्धांत समूचे विज्ञान में मान्य हैं और विज्ञान के प्रत्येक अंग में लागू होते हैं। इसका क्षेत्र विस्तृत है और इसकी सीमा निर्धारित करना अति दुष्कर है। सभी वैज्ञानिक विषय अल्पाधिक मात्रा में इसके अंतर्गत आ जाते हैं। विज्ञान की अन्य शाखायें या तो सीधे ही भौतिक पर आधारित हैं, अथवा इनके तथ्यों को इसके मूल सिद्धांतों से संबद्ध करने का प्रयत्न किया जाता है। भौतिकी का महत्व इसलिये भी अधिक है कि अभियांत्रिकी तथा शिल्पविज्ञान की जन्मदात्री होने के नाते यह इस युग के अखिल सामाजिक एवं आर्थिक विकास की मूल प्रेरक है। बहुत पहले इसको दर्शन शास्त्र का अंग मानकर नैचुरल फिलॉसोफी या प्राकृतिक दर्शनशास्त्र कहते थे, किंतु १८७० ईस्वी के लगभग इसको वर्तमान नाम भौतिकी या फिजिक्स द्वारा संबोधित करने लगे। धीरे-धीरे यह विज्ञान उन्नति करता गया और इस समय तो इसके विकास की तीव्र गति देखकर, अग्रगण्य भौतिक विज्ञानियों को भी आश्चर्य हो रहा है। धीरे-धीरे इससे अनेक महत्वपूर्ण शाखाओं की उत्पत्ति हुई, जैसे रासायनिक भौतिकी, तारा भौतिकी, जीवभौतिकी, भूभौतिकी, नाभिकीय भौतिकी, आकाशीय भौतिकी इत्यादि। भौतिकी का मुख्य सिद्धांत "उर्जा संरक्षण का नियम" है। इसके अनुसार किसी भी द्रव्यसमुदाय की ऊर्जा की मात्रा स्थिर होती है। समुदाय की आंतरिक क्रियाओं द्वारा इस मात्रा को घटाना या बढ़ाना संभव नहीं। ऊर्जा के अनेक रूप होते हैं और उसका रूपांतरण हो सकता है, किंतु उसकी मात्रा में किसी प्रकार परिवर्तन करना संभव नहीं हो सकता। आइंस्टाइन के सापेक्षिकता सिद्धांत के अनुसार द्रव्यमान भी उर्जा में बदला जा सकता है। इस प्रकार ऊर्जा संरक्षण और द्रव्यमान संरक्षण दोनों सिद्धांतों का समन्वय हो जाता है और इस सिद्धांत के द्वारा भौतिकी और रसायन एक दूसरे से संबद्ध हो जाते हैं। .

गुरुत्वाकर्षक लेंस और भौतिक शास्त्र · भौतिक शास्त्र और सामान्य आपेक्षिकता · और देखें »

रूसी भाषा

विश्व में रूसी भाषा का प्रसार रूसी भाषा (русский язык,रूस्किय् यज़ीक्) - पूर्वी स्लाविक भाषाओं में सर्वाधिक प्रचलित भाषा है। रूसी यूरोप की एक प्रमुख भाषा तो है ही, विश्व की प्रमुख भाषाओं में भी इस का विशेष स्थान है, हालाँकि भौगोलिक दृष्टि से रूसी बोलने वालों की अधिकतर संख्या यूरोप की बजाय एशिया में निवास करती है। रूसी भाषा रूसी संघ की आधिकारिक भाषा है। इसके अतिरिक्त बेलारूस, कज़ाकिस्तान, क़िर्गिस्तान, उक्राइनी स्वायत्त जनतंत्र क्रीमिया, जॉर्जियाई अस्वीकृत जनतंत्र अब्ख़ाज़िया और दक्षिणी ओसेतिया, मल्दावियाई अस्वीकृत जनतंत्र ट्रांसनीस्ट्रिया (नीस्टर का क्षेत्र) और स्वायत्त जनतंत्र गगऊज़िया नामक देशों और जनतंत्रों में रूसी भाषा सहायक आधिकारिक भाषा के रूप में स्वीकार की गई है। रूसी भूतपूर्व सोवियत संघ के सभी १५ सोवियत समाजवादी जनतंत्रों की राजकीय भाषा थी। सन् 1991 में सोवियत संघ के विघटन के बाद भी इन सभी आधुनिक स्वतंत्र देशों में अपनी-अपनी राष्ट्रीय भाषाओं के साथ-साथ परस्पर आपसी व्यवहार के लिए सम्पर्क भाषा के रूप में रूसी भाषा का प्रयोग किया जाता है। इन १५ देशों में रहने वाले निवासियों में से भी अधिकांश की मातृभाषा रूसी ही है। विश्व के विभिन्न देशों में (इसराइल, जर्मनी, संयुक्त राज्य अमरीका, कनाडा, तुर्की, ऑस्ट्रेलिया इत्यादि) जहाँ कहीं भी भूतपूर्व सोवियत संघ या रूस के प्रवासी बसे हुए हैं, वहाँ कई जगहों पर रूसी पत्र-पत्रिकाएँ प्रकाशित होती हैं, रूसी भाषा में रेडियो और दूरदर्शन काम करते हैं तथा स्कूलों में रूसी सिखाई जाती है। कुछ वर्ष पहले तक पूर्वी यूरोपियाई देशों के स्कूलों में रूसी भाषा विदेशी भाषा के रूप में पढ़ाई जाती थी। कुल मिला कर विश्व में रूसी भाषा बोलने वालों की संख्या ३०-३५ करोड़ है, जिस में से 16 करोड़ लोग इसे अपनी मातृभाषा मानते हैं। इसके आधार पर रूसी संसार की भाषाओं में पाँचवे स्थान पर है और वह संयुक्त राष्ट्र (UN) की ५ आधिकारिक भाषाओं में से एक है। .

गुरुत्वाकर्षक लेंस और रूसी भाषा · रूसी भाषा और सामान्य आपेक्षिकता · और देखें »

लेंस

ताल का चित्र ताल का उपयोग प्रकाश को फोकस करने के लिये किया जा सकता है ताल (लेंस) एक प्रकाशीय युक्ति है जो प्रकाश के अपवर्तन के सिद्धान्त पर काम करता है। ताल गोलीय, बेलनाकार आदि जैसे नियमित, ज्यामिती रूप की दो सतहों से घिरा हुआ पारदर्शक माध्यम, जिससे अपवर्तन के पश्चात् किसी वस्तु का वास्तविक अथवा काल्पनिक प्रतिबिंब बनता है, ताल कहलाता है। उत्तल (convex) ताल मसूर की आकृति का होता है। ताल की सतह प्राय: गोलीय (spherical) होती है, परंतु आवश्यकतानुसार बेलनाकर, या अगोली ताल भी प्रयुक्त होते हैं। आँख के क्रिस्टलीय ताल ही एकमात्र प्राकृतिक ताल है। हजारों वर्ष पहले भी लोग ताल के विषय में जानते थे और माइसनर (Meissner) के अनुसार प्राचीन काल में भी चश्मे से लाभ उठाया जाता था। चश्में के अलावा प्रकाशविज्ञान में ताल का उपयोग दूरदर्शी, सूक्ष्मदर्शी, प्रकाशस्तंभ, द्विनेत्री (बाइनॉक्युलर) इत्यादि में होता है। .

गुरुत्वाकर्षक लेंस और लेंस · लेंस और सामान्य आपेक्षिकता · और देखें »

सूक्ष्मदर्शी

सूक्ष्मदर्शी या सूक्ष्मबीन (माइक्रोस्कोप) वह यंत्र है जिसकी सहायता से आँख से न दिखने योग्य सूक्ष्म वस्तुओं को भी देखा जा सकता है। सूक्ष्मदर्शी की सहायता से चीजों का अवलोकन व जांच किया जाता है वह सूक्ष्मदर्शन कहलाता है। सूक्ष्मदर्शी का इतिहास लगभग ४०० वर्ष पुराना है। सबसे पहले नीदरलैण्ड में सन १६०० के आस-पास किसी काम के योग्य सूक्ष्मदर्शी का विकास हुआ। .

गुरुत्वाकर्षक लेंस और सूक्ष्मदर्शी · सामान्य आपेक्षिकता और सूक्ष्मदर्शी · और देखें »

ओरॅस्त ख़्वोलसन

ओरॅस्त ख़्वोलसन ओरॅस्त ख़्वोलसन (रूसी:Орест Данилович Хвольсон, अंग्रेज़ी: Orest Khvolson) एक रूसी भौतिकविज्ञानी थे। १९१६ में अल्बर्ट आइंस्टीन द्वारा सामान्य सापेक्षता सिद्धांत की घोषणाके बाद ख़्वोलसन ने उसपर गहरा अध्ययन किया और १९२४ में ब्रह्माण्ड में गुरुत्वाकर्षक लेंसों के पाए जाने की भविष्यवाणी की। गुरुत्वाकर्षक लेंस के ऊपर अध्ययन करने वाले और उसकी घोषणा करने वाले यह पहले वैज्ञानिक थे। पचपन साल बाद, १९७९ में, इनकी भविष्यवाणी सच साबित हुई जब ट्विन क्वेज़ार नाम की वस्तु की एक के बजाए दो-दो छवियाँ देखी गयी। .

ओरॅस्त ख़्वोलसन और गुरुत्वाकर्षक लेंस · ओरॅस्त ख़्वोलसन और सामान्य आपेक्षिकता · और देखें »

अल्बर्ट आइंस्टीन

अल्बर्ट आइंस्टीन (Albert Einstein; १४ मार्च १८७९ - १८ अप्रैल १९५५) एक विश्वप्रसिद्ध सैद्धांतिक भौतिकविद् थे जो सापेक्षता के सिद्धांत और द्रव्यमान-ऊर्जा समीकरण E .

अल्बर्ट आइंस्टीन और गुरुत्वाकर्षक लेंस · अल्बर्ट आइंस्टीन और सामान्य आपेक्षिकता · और देखें »

सूची के ऊपर निम्न सवालों के जवाब

गुरुत्वाकर्षक लेंस और सामान्य आपेक्षिकता के बीच तुलना

गुरुत्वाकर्षक लेंस 9 संबंध है और सामान्य आपेक्षिकता 24 है। वे आम 8 में है, समानता सूचकांक 24.24% है = 8 / (9 + 24)।

संदर्भ

यह लेख गुरुत्वाकर्षक लेंस और सामान्य आपेक्षिकता के बीच संबंध को दर्शाता है। जानकारी निकाला गया था, जिसमें से एक लेख का उपयोग करने के लिए, कृपया देखें:

अरे! अब हम फेसबुक पर हैं! »