हम Google Play स्टोर पर Unionpedia ऐप को पुनर्स्थापित करने के लिए काम कर रहे हैं
🌟हमने बेहतर नेविगेशन के लिए अपने डिज़ाइन को सरल बनाया!
Instagram Facebook X LinkedIn

गणित का इतिहास और सर्वेक्षण

शॉर्टकट: मतभेद, समानता, समानता गुणांक, संदर्भ

गणित का इतिहास और सर्वेक्षण के बीच अंतर

गणित का इतिहास vs. सर्वेक्षण

ब्राह्मी अंक, पहली शताब्दी के आसपास अध्ययन का क्षेत्र जो गणित के इतिहास के रूप में जाना जाता है, प्रारंभिक रूप से गणित में अविष्कारों की उत्पत्ति में एक जांच है और कुछ हद तक, अतीत के अंकन और गणितीय विधियों की एक जांच है। आधुनिक युग और ज्ञान के विश्व स्तरीय प्रसार से पहले, कुछ ही स्थलों में नए गणितीय विकास के लिखित उदाहरण प्रकाश में आये हैं। सबसे प्राचीन उपलब्ध गणितीय ग्रन्थ हैं, प्लिमपटन ३२२ (Plimpton 322)(बेबीलोन का गणित (Babylonian mathematics) सी.१९०० ई.पू.) मास्को गणितीय पेपाइरस (Moscow Mathematical Papyrus)(इजिप्ट का गणित (Egyptian mathematics) सी.१८५० ई.पू.) रहिंद गणितीय पेपाइरस (Rhind Mathematical Papyrus)(इजिप्ट का गणित सी.१६५० ई.पू.) और शुल्बा के सूत्र (Shulba Sutras)(भारतीय गणित सी. ८०० ई.पू.)। ये सभी ग्रन्थ तथाकथित पाईथोगोरस की प्रमेय (Pythagorean theorem) से सम्बंधित हैं, जो मूल अंकगणितीय और ज्यामिति के बाद गणितीय विकास में सबसे प्राचीन और व्यापक प्रतीत होती है। बाद में ग्रीक और हेल्लेनिस्टिक गणित (Greek and Hellenistic mathematics) में इजिप्त और बेबीलोन के गणित का विकास हुआ, जिसने विधियों को परिष्कृत किया (विशेष रूप से प्रमाणों (mathematical rigor) में गणितीय निठरता (proofs) का परिचय) और गणित को विषय के रूप में विस्तृत किया। इसी क्रम में, इस्लामी गणित (Islamic mathematics) ने गणित का विकास और विस्तार किया जो इन प्राचीन सभ्यताओं में ज्ञात थी। फिर गणित पर कई ग्रीक और अरबी ग्रंथों कालैटिन में अनुवाद (translated into Latin) किया गया, जिसके परिणाम स्वरुप मध्यकालीन यूरोप (medieval Europe) में गणित का आगे विकास हुआ। प्राचीन काल से मध्य युग (Middle Ages) के दौरान, गणितीय रचनात्मकता के अचानक उत्पन्न होने के कारण सदियों में ठहराव आ गया। १६ वीं शताब्दी में, इटली में पुनर् जागरण की शुरुआत में, नए गणितीय विकास हुए. सर्वेक्षण उपकरणो की तालिका सर्वेक्षण (Surveying) उस कलात्मक विज्ञान को कहते हैं जिससे पृथ्वी की सतह पर स्थित बिंदुओं की समुचित माप लेकर, किसी पैमाने पर आलेखन (plotting) करके, उनकी सापेक्ष क्षैतिज और ऊर्ध्व दूरियों का कागज या, दूसरे माध्यम पर सही-सही ज्ञान कराया जा सके। इस प्रकार का अंकित माध्यम लेखाचित्र या मानचित्र कहलाता है। ऐसी आलेखन क्रिया की संपन्नता और सफलता के लिए रैखिक और कोणीय, दोनों ही माप लेना आवश्यक होता है। सिद्धांतत: आलेखन क्रिया के लिए रेखिक माप का होना ही पर्याप्त है। मगर बहुधा ऊँची नीची भग्न भूमि पर सीधे रैखिक माप प्राप्त करना या तो असंभव होता है, या इतना जटिल होता है कि उसकी यथार्थता संदिग्ध हो जाती है। ऐसे क्षेत्रों में कोणीय माप रैखिक माप के सहायक अंग बन जाते हैं और गणितीय विधियों से अज्ञात रैखिक माप ज्ञात करना संभव कर देते हैं। इस प्रकार सर्वेक्षण में तीन कार्य सम्मिलित होते हैं -.

गणित का इतिहास और सर्वेक्षण के बीच समानता

गणित का इतिहास और सर्वेक्षण आम में एक बात है (यूनियनपीडिया में): सर्वेक्षण

सर्वेक्षण

सर्वेक्षण उपकरणो की तालिका सर्वेक्षण (Surveying) उस कलात्मक विज्ञान को कहते हैं जिससे पृथ्वी की सतह पर स्थित बिंदुओं की समुचित माप लेकर, किसी पैमाने पर आलेखन (plotting) करके, उनकी सापेक्ष क्षैतिज और ऊर्ध्व दूरियों का कागज या, दूसरे माध्यम पर सही-सही ज्ञान कराया जा सके। इस प्रकार का अंकित माध्यम लेखाचित्र या मानचित्र कहलाता है। ऐसी आलेखन क्रिया की संपन्नता और सफलता के लिए रैखिक और कोणीय, दोनों ही माप लेना आवश्यक होता है। सिद्धांतत: आलेखन क्रिया के लिए रेखिक माप का होना ही पर्याप्त है। मगर बहुधा ऊँची नीची भग्न भूमि पर सीधे रैखिक माप प्राप्त करना या तो असंभव होता है, या इतना जटिल होता है कि उसकी यथार्थता संदिग्ध हो जाती है। ऐसे क्षेत्रों में कोणीय माप रैखिक माप के सहायक अंग बन जाते हैं और गणितीय विधियों से अज्ञात रैखिक माप ज्ञात करना संभव कर देते हैं। इस प्रकार सर्वेक्षण में तीन कार्य सम्मिलित होते हैं -.

गणित का इतिहास और सर्वेक्षण · सर्वेक्षण और सर्वेक्षण · और देखें »

सूची के ऊपर निम्न सवालों के जवाब

गणित का इतिहास और सर्वेक्षण के बीच तुलना

गणित का इतिहास 178 संबंध है और सर्वेक्षण 24 है। वे आम 1 में है, समानता सूचकांक 0.50% है = 1 / (178 + 24)।

संदर्भ

यह लेख गणित का इतिहास और सर्वेक्षण के बीच संबंध को दर्शाता है। जानकारी निकाला गया था, जिसमें से एक लेख का उपयोग करने के लिए, कृपया देखें: