गणित का इतिहास और रीमान-समाकल
शॉर्टकट: मतभेद, समानता, समानता गुणांक, संदर्भ।
गणित का इतिहास और रीमान-समाकल के बीच अंतर
गणित का इतिहास vs. रीमान-समाकल
ब्राह्मी अंक, पहली शताब्दी के आसपास अध्ययन का क्षेत्र जो गणित के इतिहास के रूप में जाना जाता है, प्रारंभिक रूप से गणित में अविष्कारों की उत्पत्ति में एक जांच है और कुछ हद तक, अतीत के अंकन और गणितीय विधियों की एक जांच है। आधुनिक युग और ज्ञान के विश्व स्तरीय प्रसार से पहले, कुछ ही स्थलों में नए गणितीय विकास के लिखित उदाहरण प्रकाश में आये हैं। सबसे प्राचीन उपलब्ध गणितीय ग्रन्थ हैं, प्लिमपटन ३२२ (Plimpton 322)(बेबीलोन का गणित (Babylonian mathematics) सी.१९०० ई.पू.) मास्को गणितीय पेपाइरस (Moscow Mathematical Papyrus)(इजिप्ट का गणित (Egyptian mathematics) सी.१८५० ई.पू.) रहिंद गणितीय पेपाइरस (Rhind Mathematical Papyrus)(इजिप्ट का गणित सी.१६५० ई.पू.) और शुल्बा के सूत्र (Shulba Sutras)(भारतीय गणित सी. ८०० ई.पू.)। ये सभी ग्रन्थ तथाकथित पाईथोगोरस की प्रमेय (Pythagorean theorem) से सम्बंधित हैं, जो मूल अंकगणितीय और ज्यामिति के बाद गणितीय विकास में सबसे प्राचीन और व्यापक प्रतीत होती है। बाद में ग्रीक और हेल्लेनिस्टिक गणित (Greek and Hellenistic mathematics) में इजिप्त और बेबीलोन के गणित का विकास हुआ, जिसने विधियों को परिष्कृत किया (विशेष रूप से प्रमाणों (mathematical rigor) में गणितीय निठरता (proofs) का परिचय) और गणित को विषय के रूप में विस्तृत किया। इसी क्रम में, इस्लामी गणित (Islamic mathematics) ने गणित का विकास और विस्तार किया जो इन प्राचीन सभ्यताओं में ज्ञात थी। फिर गणित पर कई ग्रीक और अरबी ग्रंथों कालैटिन में अनुवाद (translated into Latin) किया गया, जिसके परिणाम स्वरुप मध्यकालीन यूरोप (medieval Europe) में गणित का आगे विकास हुआ। प्राचीन काल से मध्य युग (Middle Ages) के दौरान, गणितीय रचनात्मकता के अचानक उत्पन्न होने के कारण सदियों में ठहराव आ गया। १६ वीं शताब्दी में, इटली में पुनर् जागरण की शुरुआत में, नए गणितीय विकास हुए. गणित की वास्तविक विश्लेषण के रूप में पहचानी जाने वाली शाखा में रीमान समाकलन किसी फलन का किसी अन्तराल में परिभाषित प्रथम निश्चित परिभाषा है। यह परिभाषा बर्नहार्ड रीमान ने दी थी। विभिन्न फलनोम और प्रायोगिक अनुप्रयोगों के लिए रीमान समाकलन कलन की मूलभूत प्रमेय अथवा संख्यात्मक समाकलन के सन्निकटन द्वारा ज्ञात किया जा सकता है। रीमान समाकलन विभिन्न सैद्धान्तिक उद्देश्यों के लिए अनुपयुक्त है। .
गणित का इतिहास और रीमान-समाकल के बीच समानता
गणित का इतिहास और रीमान-समाकल आम में 2 बातें हैं (यूनियनपीडिया में): फलन, गणित।
''X'' के किसी सदस्य का ''Y'' के केवल एक सदस्य से सम्बन्ध हो तो वह फलन है अन्यथा नहीं। ''Y''' के कुछ सदस्यों का '''X''' के किसी भी सदस्य से सम्बन्ध '''न''' होने पर भी फलन परिभाषित है। गणित में जब कोई राशि का मान किसी एक या एकाधिक राशियों के मान पर निर्भर करता है तो इस संकल्पना को व्यक्त करने के लिये फलन (function) शब्द का प्रयोग किया जाता है। उदाहरण के लिये किसी ऋण पर चक्रवृद्धि ब्याज की राशि मूलधन, समय एवं ब्याज की दर पर निर्भर करती है; इसलिये गणित की भाषा में कह सकते हैं कि चक्रवृद्धि ब्याज, मूलधन, ब्याज की दर तथा समय का फलन है। स्पष्ट है कि किसी फलन के साथ दो प्रकार की राशियां सम्बन्धित होती हैं -.
गणित का इतिहास और फलन · फलन और रीमान-समाकल · और देखें »
पुणे में आर्यभट की मूर्ति ४७६-५५० गणित ऐसी विद्याओं का समूह है जो संख्याओं, मात्राओं, परिमाणों, रूपों और उनके आपसी रिश्तों, गुण, स्वभाव इत्यादि का अध्ययन करती हैं। गणित एक अमूर्त या निराकार (abstract) और निगमनात्मक प्रणाली है। गणित की कई शाखाएँ हैं: अंकगणित, रेखागणित, त्रिकोणमिति, सांख्यिकी, बीजगणित, कलन, इत्यादि। गणित में अभ्यस्त व्यक्ति या खोज करने वाले वैज्ञानिक को गणितज्ञ कहते हैं। बीसवीं शताब्दी के प्रख्यात ब्रिटिश गणितज्ञ और दार्शनिक बर्टेंड रसेल के अनुसार ‘‘गणित को एक ऐसे विषय के रूप में परिभाषित किया जा सकता है जिसमें हम जानते ही नहीं कि हम क्या कह रहे हैं, न ही हमें यह पता होता है कि जो हम कह रहे हैं वह सत्य भी है या नहीं।’’ गणित कुछ अमूर्त धारणाओं एवं नियमों का संकलन मात्र ही नहीं है, बल्कि दैनंदिन जीवन का मूलाधार है। .
गणित और गणित का इतिहास · गणित और रीमान-समाकल · और देखें »
सूची के ऊपर निम्न सवालों के जवाब
- क्या गणित का इतिहास और रीमान-समाकल लगती में
- यह आम गणित का इतिहास और रीमान-समाकल में है क्या
- गणित का इतिहास और रीमान-समाकल के बीच समानता
गणित का इतिहास और रीमान-समाकल के बीच तुलना
गणित का इतिहास 178 संबंध है और रीमान-समाकल 6 है। वे आम 2 में है, समानता सूचकांक 1.09% है = 2 / (178 + 6)।
संदर्भ
यह लेख गणित का इतिहास और रीमान-समाकल के बीच संबंध को दर्शाता है। जानकारी निकाला गया था, जिसमें से एक लेख का उपयोग करने के लिए, कृपया देखें: