हम Google Play स्टोर पर Unionpedia ऐप को पुनर्स्थापित करने के लिए काम कर रहे हैं
🌟हमने बेहतर नेविगेशन के लिए अपने डिज़ाइन को सरल बनाया!
Instagram Facebook X LinkedIn

क्रमगुणित और क्रमचय-संचय

शॉर्टकट: मतभेद, समानता, समानता गुणांक, संदर्भ

क्रमगुणित और क्रमचय-संचय के बीच अंतर

क्रमगुणित vs. क्रमचय-संचय

गणित में किसी अऋणात्मक पूर्णांक n का क्रमगुणित या 'फैक्टोरियल' (factorial) वह संख्या है जो उस पूर्णांक n तथा उससे छोटे सभी धनात्मक पूर्णांकों के गुननफल के बराबर होता है। इसे n!, से निरूपित किया जाता है। उदाहरण के लिये, 0! का मान is 1 होता है। गणित के अनेकों क्षेत्रों में क्रमगुणित का उपयोग करना पड़ता है, जिनमें से क्रमचय संचय (combinatorics), बीजगणित तथा गणितीय विश्लेषण (mathematical analysis) प्रमुख हैं। . दोहराव के साथ क्रमपरिवर्तन। क्रमचय-संचय (Combinatorics) गणित की शाखा है जिसमें गिनने योग्य विवर्त (discrete) संरचनाओं (structures) का अध्ययन किया जाता है। शुद्ध गणित, बीजगणित, प्रायिकता सिद्धांत, टोपोलोजी तथा ज्यामिति आदि गणित के विभिन्न क्षेत्रों में क्रमचय-संचय से संबन्धित समस्याये पैदा होतीं हैं। इसके अलावा क्रमचय-संचय का उपयोग इष्टतमीकरण (आप्टिमाइजेशन), संगणक विज्ञान, एर्गोडिक सिद्धांत (ergodic theory) तथा सांख्यिकीय भौतिकी में भी होता है। ग्राफ सिद्धांत, क्रमचय-संचय के सबसे पुराने एवं सर्वाधिक प्रयुक्त भागों में से है। ऐतिहासिक रूप से क्रमचय-संचय के बहुत से प्रश्न विलगित रूप में उठते रहे थे और उनके तदर्थ हल प्रस्तुत किये जाते रहे। किन्तु बीसवीं शताब्दी के उत्तरार्ध में शक्तिशाली एवं सामान्य सैद्धांतिक विधियाँ विकसित हुईं और क्रमचय-संचय गणित की स्वतंत्र शाखा बनकर उभरा। .

क्रमगुणित और क्रमचय-संचय के बीच समानता

क्रमगुणित और क्रमचय-संचय आम में 2 बातें हैं (यूनियनपीडिया में): बीजगणित, गणित

बीजगणित

बीजगणित (संस्कृत ग्रन्थ) भी देखें। ---- आर्यभट बीजगणित (algebra) गणित की वह शाखा जिसमें संख्याओं के स्थान पर चिन्हों का प्रयोग किया जाता है। बीजगणित चर तथा अचर राशियों के समीकरण को हल करने तथा चर राशियों के मान निकालने पर आधारित है। बीजगणित के विकास के फलस्वरूप निर्देशांक ज्यामिति व कैलकुलस का विकास हुआ जिससे गणित की उपयोगिता बहुत बढ़ गयी। इससे विज्ञान और तकनीकी के विकास को गति मिली। महान गणितज्ञ भास्कराचार्य द्वितीय ने कहा है - अर्थात् मंदबुद्धि के लोग व्यक्ति गणित (अंकगणित) की सहायता से जो प्रश्न हल नहीं कर पाते हैं, वे प्रश्न अव्यक्त गणित (बीजगणित) की सहायता से हल कर सकते हैं। दूसरे शब्दों में, बीजगणित से अंकगणित की कठिन समस्याओं का हल सरल हो जाता है। बीजगणित से साधारणतः तात्पर्य उस विज्ञान से होता है, जिसमें संख्याओं को अक्षरों द्वारा निरूपित किया जाता है। परंतु संक्रिया चिह्न वही रहते हैं, जिनका प्रयोग अंकगणित में होता है। मान लें कि हमें लिखना है कि किसी आयत का क्षेत्रफल उसकी लंबाई तथा चौड़ाई के गुणनफल के समान होता है तो हम इस तथ्य को निमन प्रकार निरूपित करेंगे— बीजगणिति के आधुनिक संकेतवाद का विकास कुछ शताब्दी पूर्व ही प्रारंभ हुआ है; परंतु समीकरणों के साधन की समस्या बहुत पुरानी है। ईसा से 2000 वर्ष पूर्व लोग अटकल लगाकर समीकरणों को हल करते थे। ईसा से 300 वर्ष पूर्व तक हमारे पूर्वज समीकरणों को शब्दों में लिखने लगे थे और ज्यामिति विधि द्वारा उनके हल ज्ञात कर लेते थे। .

क्रमगुणित और बीजगणित · क्रमचय-संचय और बीजगणित · और देखें »

गणित

पुणे में आर्यभट की मूर्ति ४७६-५५० गणित ऐसी विद्याओं का समूह है जो संख्याओं, मात्राओं, परिमाणों, रूपों और उनके आपसी रिश्तों, गुण, स्वभाव इत्यादि का अध्ययन करती हैं। गणित एक अमूर्त या निराकार (abstract) और निगमनात्मक प्रणाली है। गणित की कई शाखाएँ हैं: अंकगणित, रेखागणित, त्रिकोणमिति, सांख्यिकी, बीजगणित, कलन, इत्यादि। गणित में अभ्यस्त व्यक्ति या खोज करने वाले वैज्ञानिक को गणितज्ञ कहते हैं। बीसवीं शताब्दी के प्रख्यात ब्रिटिश गणितज्ञ और दार्शनिक बर्टेंड रसेल के अनुसार ‘‘गणित को एक ऐसे विषय के रूप में परिभाषित किया जा सकता है जिसमें हम जानते ही नहीं कि हम क्या कह रहे हैं, न ही हमें यह पता होता है कि जो हम कह रहे हैं वह सत्य भी है या नहीं।’’ गणित कुछ अमूर्त धारणाओं एवं नियमों का संकलन मात्र ही नहीं है, बल्कि दैनंदिन जीवन का मूलाधार है। .

क्रमगुणित और गणित · क्रमचय-संचय और गणित · और देखें »

सूची के ऊपर निम्न सवालों के जवाब

क्रमगुणित और क्रमचय-संचय के बीच तुलना

क्रमगुणित 5 संबंध है और क्रमचय-संचय 26 है। वे आम 2 में है, समानता सूचकांक 6.45% है = 2 / (5 + 26)।

संदर्भ

यह लेख क्रमगुणित और क्रमचय-संचय के बीच संबंध को दर्शाता है। जानकारी निकाला गया था, जिसमें से एक लेख का उपयोग करने के लिए, कृपया देखें: