कार्तीय निर्देशांक पद्धति और त्रिकोणमितीय फलन
शॉर्टकट: मतभेद, समानता, समानता गुणांक, संदर्भ।
कार्तीय निर्देशांक पद्धति और त्रिकोणमितीय फलन के बीच अंतर
कार्तीय निर्देशांक पद्धति vs. त्रिकोणमितीय फलन
Fig. 1 - कार्तीय निर्देशांक पद्धति. चार बिन्दु प्रकट हैं: (2,3) हरे मै, (-3,1) लाल मै, (-1.5,-2.5) नीले मै और (0,0), मूल बिन्दु, पीले में. गणित में कार्तीय निर्देशांक पद्धति (cartesian coordinate system), समतल मे किसी बिन्दु की स्थिति को दो अंको के द्वारा अद्वितीय रूप से दर्शाने के लिए प्रयुक्त होती है। इन दो अंको को उस बिन्दु के क्रमशः X-निर्देशांक व Y-निर्देशांक कहा जाता है। इसके लिये दो लंबवत रेखाएं निर्धारित की जाती हैं जिन्हे X-अक्ष और Y-अक्ष कहते हैं। इनके कटान बिन्दु को मूल बिन्दु (origin) कहते हैं। जिस बिन्दु की स्थिति दर्शानी होती है, उस बिन्दु से इन अक्षों पर लम्ब डाले जाते हैं। इस बिन्दु से Y-अक्ष की दूरी को उस बिन्दु का X-निर्देशांक या भुज कहते हैं। इसी प्रकार इस बिन्दु की X-अक्ष से दूरी को उस बिन्दु का Y-निर्देशांक या कोटि कहते है। उदाहरण के लिये यदि किसी बिन्दु की Y-अक्ष से (लम्बवत) दूरी a तथा X-अक्ष से दूरी b हो तो क्रमित-युग्म (a,b) को उस बिन्दु का कार्तीय निर्देशांक कहते हैं। . right गणित में त्रिकोणमितीय फलन (trigonometric functions) या 'वृत्तीय फलन' (circular functions) कोणों के फलन हैं। ये त्रिभुजों के अध्ययन में तथा आवर्ती संघटनाओं (periodic phenomena) के मॉडलन एवं अन्य अनेकानेक जगह प्रयुक्त होते हैं। ज्या (sine), कोज्या (कोज) (cosine) तथा स्पर्शज्या (स्पर) (tangent) सबसे महत्व के त्रिकोणमितीय फलन हैं। ईकाई त्रिज्या वाले मानक वृत्त के संदर्भ में ये फलन सामने के चित्र में प्रदर्शित हैं। इन तीनों फलनों के व्युत्क्रम फलनों को क्रमशः व्युज्या (व्युज) (cosecant), व्युकोज्या (व्युक) (secant) तथा व्युस्पर्शज्या (व्युस) (cotangent) कहते हैं। .
कार्तीय निर्देशांक पद्धति और त्रिकोणमितीय फलन के बीच समानता
कार्तीय निर्देशांक पद्धति और त्रिकोणमितीय फलन आम में एक बात है (यूनियनपीडिया में): गणित।
पुणे में आर्यभट की मूर्ति ४७६-५५० गणित ऐसी विद्याओं का समूह है जो संख्याओं, मात्राओं, परिमाणों, रूपों और उनके आपसी रिश्तों, गुण, स्वभाव इत्यादि का अध्ययन करती हैं। गणित एक अमूर्त या निराकार (abstract) और निगमनात्मक प्रणाली है। गणित की कई शाखाएँ हैं: अंकगणित, रेखागणित, त्रिकोणमिति, सांख्यिकी, बीजगणित, कलन, इत्यादि। गणित में अभ्यस्त व्यक्ति या खोज करने वाले वैज्ञानिक को गणितज्ञ कहते हैं। बीसवीं शताब्दी के प्रख्यात ब्रिटिश गणितज्ञ और दार्शनिक बर्टेंड रसेल के अनुसार ‘‘गणित को एक ऐसे विषय के रूप में परिभाषित किया जा सकता है जिसमें हम जानते ही नहीं कि हम क्या कह रहे हैं, न ही हमें यह पता होता है कि जो हम कह रहे हैं वह सत्य भी है या नहीं।’’ गणित कुछ अमूर्त धारणाओं एवं नियमों का संकलन मात्र ही नहीं है, बल्कि दैनंदिन जीवन का मूलाधार है। .
कार्तीय निर्देशांक पद्धति और गणित · गणित और त्रिकोणमितीय फलन · और देखें »
सूची के ऊपर निम्न सवालों के जवाब
- क्या कार्तीय निर्देशांक पद्धति और त्रिकोणमितीय फलन लगती में
- यह आम कार्तीय निर्देशांक पद्धति और त्रिकोणमितीय फलन में है क्या
- कार्तीय निर्देशांक पद्धति और त्रिकोणमितीय फलन के बीच समानता
कार्तीय निर्देशांक पद्धति और त्रिकोणमितीय फलन के बीच तुलना
कार्तीय निर्देशांक पद्धति 2 संबंध है और त्रिकोणमितीय फलन 12 है। वे आम 1 में है, समानता सूचकांक 7.14% है = 1 / (2 + 12)।
संदर्भ
यह लेख कार्तीय निर्देशांक पद्धति और त्रिकोणमितीय फलन के बीच संबंध को दर्शाता है। जानकारी निकाला गया था, जिसमें से एक लेख का उपयोग करने के लिए, कृपया देखें: