लोगो
यूनियनपीडिया
संचार
Google Play पर पाएं
नई! अपने एंड्रॉयड डिवाइस पर डाउनलोड यूनियनपीडिया!
मुक्त
ब्राउज़र की तुलना में तेजी से पहुँच!
 

ऊष्मागतिकी का शून्यवाँ नियम और गैस

शॉर्टकट: मतभेद, समानता, समानता गुणांक, संदर्भ

ऊष्मागतिकी का शून्यवाँ नियम और गैस के बीच अंतर

ऊष्मागतिकी का शून्यवाँ नियम vs. गैस

ऊष्मागतिकी के अध्ययन में एक नई भावना का समावेश होता है, वह ताप की भावना है। यदि किसी पिंड (बॉडी) के गुणधर्म इस बात पर निर्भर न रहें कि वह कितना गरम अथवा ठंडा है तो उसका पूरा परिचय पाने के लिए उसके आयतन अथवा उसके घनत्व के ज्ञान की ही आवश्यकता होती है। जैसे यदि हम कोई द्रव लें तो यांत्रिकी में यह माना जाता है कि उसके ऊपर दाब बढ़ाने पर उसका आयतन कम होगा। दाब का मान निश्चित करते ही आयतन का मान भी निश्चित हो जाता है। इस तरह इन दो चर राशियों में से एक स्वतंत्र होती है और दूसरी आश्रित अथवा परंतत्र। परंतु प्रत्यक्ष अनुभव से हम जानते हैं कि आयतन यदि स्थिर हो तो भी गरम या ठंडा करके दाब को बदला जा सकता है। इस प्रकार दाब तथा आयतन दोनों ही स्वतंत्र चर राशियाँ हैं। आगे चलकर आवश्यकतानुसार हम अन्य चर राशियों का भी समावेश करेंगे। और आगे बढ़ने के पहले हम ऐसी दीवारों की कल्पना करेंगे जो विभिन्न द्रवों को एक दूसरे से अलग करती हैं। ये दीवारें इतनी सूक्ष्म होंगी कि इन द्रवों की पारस्परिक अंतरक्रिया को निश्चित करने के अतिरिक्त उन द्रवों के गुणधर्म के ऊपर उनका अन्य कोई प्रभाव नहीं होगा। द्रव इन दीवारों के एक ओर से दूसरी ओर न जा सकेगा। हम यह भी कल्पना करेंगे कि ये दीवारें दो तरह की हैं। एक ऐसी दीवारें जिनसे आवृत द्रव में बिना उन दीवारों अथवा उनके किसी भाग को हटाए हम कोई परिवर्तन नहीं कर सकते और उन द्रवों में हम विद्युतीय या चुंबकीय बलों द्वारा परिवर्तन कर सकते हैं क्योंकि ये बल दूर से भी अपना प्रभाव डाल सकते हैं। ऐसी दीवारों को हम "स्थिरोष्म" दीवारें कहेंगे। दूसरे प्रकार की दीवारों को हम "उष्मागम्य" (डायाथर्मानस) दीवारें कहेंगे। ये दीवारें ऐसी होंगी कि साम्यावस्था में इनके द्वारा अलग किए गए द्रवों की दाब तथा आयतन के मान स्वेच्छ नहीं होंगे, अर्थात् यदि एक द्रव की दाब एवं आयतन और दूसरे द्रव की दाब निश्चित कर दी जाए तो दूसरे द्रव का आयतन भी निश्चित हो जाएगा। ऐसी अवस्था में पहले द्रव की दाब एवं आयतन P1 और V1 तथा दूसरे द्रव की दाब एवं आयतन P2 और V2 में एक संबंध होगा जिसे हम निम्नांकित समीकरण द्वारा प्रकट कर सकते हैं:; F (P1, V1, P2, V2) . गैसों का कण मॉडल: गैसों के कणों के बीच की औसत दूरी अपेक्षाकृत अधिक होती है। गैस (Gas) पदार्थ की तीन अवस्थाओं में से एक अवस्था का नाम है (अन्य दो अवस्थाएँ हैं - ठोस तथा द्रव)। गैस अवस्था में पदार्थ का न तो निश्चित आकार होता है न नियत आयतन। ये जिस बर्तन में रखे जाते हैं उसी का आकार और पूरा आयतन ग्रहण कर लेते हैं। जीवधारियों के लिये दो गैसे मुख्य हैं, आक्सीजन गैस जिसके द्वारा जीवधारी जीवित रहता है, दूसरी जिसे जीवधारी अपने शरीर से छोड़ते हैं, उसका नाम कार्बन डाई आक्साइड है। इनके अलावा अन्य गैसों का भी बहु-प्रयोग होता है, जैसे खाना पकाने वाली रसोई गैस। पानी दो गैसों से मिलकर बनता है, आक्सीजन और हाइड्रोजन। .

ऊष्मागतिकी का शून्यवाँ नियम और गैस के बीच समानता

ऊष्मागतिकी का शून्यवाँ नियम और गैस आम में एक बात है (यूनियनपीडिया में): द्रव

द्रव

द्रव का कोई निश्चित आकार नहीं होता। द्रव जिस पात्र में रखा जाता है उसी का आकार ग्रहण कर लेता है। प्रकृति में सभी रासायनिक पदार्थ साधारणत: ठोस, द्रव और गैस तथा प्लाज्मा - इन चार अवस्थाओं में पाए जाते हैं। द्रव और गैस प्रवाहित हो सकते हैं, किंतु ठोस प्रवाहित नहीं होता। लचीले ठोस पदार्थों में आयतन अथवा आकार को विकृत करने से प्रतिबल उत्पन्न होता है। अल्प विकृतियों के लिए विकृति और प्रतिबल परस्पर समानुपाती होते हैं। इस गुण के कारण लचीले ठोस एक निश्चित मान तक के बाहरी बलों को सँभालने की क्षमता रखते हैं। प्रवाह का गुण होने के कारण द्रवों और गैसों को तरल पदार्थ (fluid) कहा जाता है। ये पदार्थ कर्तन (shear) बलों को सँभालने में अक्षम होते हैं और गुरुत्वाकर्षण के प्रभाव के कारण प्रवाहित होकर जिस बरतन में रखे रहते हैं, उसी का आकार धारण कर लेते हैं। ठोस और तरल का यांत्रिक भेद बहुत स्पष्ट नहीं है। बहुत से पदार्थ, विशेषत: उच्च कोटि के बहुलक (polymer) के यांत्रिक गुण, श्यान तरल (viscous fluid) और लचीले ठोस के गुणों के मध्यवर्ती होते हैं। प्रत्येक पदार्थ के लिए एक ऐसा क्रांतिक ताप (critical temperature) पाया जाता है, जिससे अधिक होने पर पदार्थ केवल तरल अवस्था में रह सकता है। क्रांतिक ताप पर पदार्थ की द्रव और गैस अवस्था में विशेष अंतर नहीं रह जाता। इससे नीचे के प्रत्येक ताप पर द्रव के साथ उसका कुछ वाष्प भी उपस्थित रहता है और इस वाष्प का कुछ निश्चित दबाव भी होता है। इस दबाव को वाष्प दबाव कहते हैं। प्रत्येक ताप पर वाष्प दबाव का अधिकतम मान निश्चित होता है। इस अधिकतम दबाव को संपृक्त-वाष्प-दबाव के बराबर अथवा उससे अधिक हो, तो द्रव स्थायी रहता है। यदि ऊपरी दबाव द्रव के संपृक्तवाष्प-दबाव से कम हो, तो द्रव अस्थायी होता है। संपृक्त-वाष्प-दबाव ताप के बढ़ने से बढ़ता है। जिस ताप पर द्रव का संपृक्त-वाष्प-दबाव बाहरी वातावरण के दबाव के बराबर हो जाता है, उसपर द्रव बहुत तेजी से वाष्पित होने लगता है। इस ताप को द्रव का क्वथनांक (boiling point) कहते हैं। यदि बाहरी दबाव सर्वथा स्थायी हो तो क्वथनांक से नीचे द्रव स्थायी रहता है। क्वथनांक पर पहुँचने पर यह खौलने लगता है। इस दशा में यह ताप का शोषण करके द्रव अवस्था से गैस अवस्था में परिवर्तित होने लगता है। क्वथनांक पर द्रव के इकाई द्रव्यमान को द्रव से पूर्णत: गैस में परिवर्तित करने के लिए जितने कैलोरी ऊष्मा की आवश्यकता होती है, उसे द्रव के वाष्पीभवन की गुप्त ऊष्मा कहते हैं। विभिन्न द्रव पदार्थों के लिए इसका मान भिन्न होता है। एक नियत दबाव पर ठोस और द्रव दोनों रूप साथ साथ एक निश्चित ताप पर पाए जा सकते हैं। यह ताप द्रव का हिमबिंदु या ठोस का द्रवणांक कहलाता है। द्रवणांक पर पदार्थ के इकाई द्रव्यमान को ठोस से पूर्णत: द्रव में परिवर्तित करने में जितनी ऊष्मा की आवश्यकता होती है, उसे ठोस के गलन की गुप्त ऊष्मा कहते हैं। अक्रिस्टली पदार्थों के लिए कोई नियत गलनांक नहीं पाया जाता। वे गरम करने पर धीरे धीरे मुलायम होते जाते हैं और फिर द्रव अवस्था में आ जाते हैं। काँच तथा काँच जैसे अन्य पदार्थ इसी प्रकार का व्यवहार करते हैं। एक नियत ताप और नियत दबाव पर प्रत्येक द्रव्य की तीनों अवस्थाएँ एक साथ विद्यमान रह सकती हैं। दबाव और ताप के बीच खीचें गए आरेख (diagram) में ये नियत ताप और दबाव एक बिंदु द्वारा प्रदर्शित किए जाते हैं। इस बिंदु को द्रव का त्रिक् बिंदु (triple point) कहते हैं। त्रिक् विंदु की अपेक्षा निम्न दाबों पर द्रव अस्थायी रहता है। यदि किसी ठोस को त्रिक् विंदु की अपेक्षा निम्न दबाव पर रखकर गरम किया जाए तो वह बिना द्रव बने ही वाष्प में परिवर्तित हो जाता है, अर्थात् ऊर्ध्वपातित (sublime) हो जाता है। द्रव के मुक्त तल में, जो उस द्रव के वाष्प या सामान्य वायु के संपर्क में रहता है, एक विशेष गुण पाया जाता है, जिसके कारण यह तल तनी हुई महीन झिल्ली जैसा व्यवहार करता है। इस गुण को पृष्ठ तनाव (surface tension) कहते हैं। पृष्ठ तनाव के कारण द्रव के पृष्ठ का क्षेत्रफल यथासंभव न्यूनतम होता है। किसी दिए आयतन के लिए सबसे कम क्षेत्रफल एक गोले का होता है। अत: ऐसी स्थितियों में जब कि बाहरी बल नगण्य माने जा सकते हों द्रव की बूँदे गोल होती हैं। जब कोई द्रव किसी ठोस, या अन्य किसी अमिश्रय द्रव, के संपर्क में आता है तो भी संपर्क तल पर तनाव उत्पन्न होता है। साधारणत: कोई भी पदार्थ केवल एक ही प्रकार के द्रव रूप में प्राप्त होता है, किंतु इसके कुछ अपवाद भी मिलते हैं, जैसे हीलियम गैस को द्रवित करके दो प्रकार के हीलियम द्रव प्राप्त किए जा सकते हैं। उसी प्रकार पैरा-ऐज़ॉक्सी-ऐनिसोल (Para-azoxy-anisole) प्रकाशत: विषमदैशिक (anisotropic) द्रव के रूप में, क्रिस्टलीय अवस्था में तथा सामान्य द्रव के रूप में भी प्राप्त हो सकता है। .

ऊष्मागतिकी का शून्यवाँ नियम और द्रव · गैस और द्रव · और देखें »

सूची के ऊपर निम्न सवालों के जवाब

ऊष्मागतिकी का शून्यवाँ नियम और गैस के बीच तुलना

ऊष्मागतिकी का शून्यवाँ नियम 11 संबंध है और गैस 21 है। वे आम 1 में है, समानता सूचकांक 3.12% है = 1 / (11 + 21)।

संदर्भ

यह लेख ऊष्मागतिकी का शून्यवाँ नियम और गैस के बीच संबंध को दर्शाता है। जानकारी निकाला गया था, जिसमें से एक लेख का उपयोग करने के लिए, कृपया देखें:

अरे! अब हम फेसबुक पर हैं! »