लोगो
यूनियनपीडिया
संचार
Google Play पर पाएं
नई! अपने एंड्रॉयड डिवाइस पर डाउनलोड यूनियनपीडिया!
इंस्टॉल करें
ब्राउज़र की तुलना में तेजी से पहुँच!
 

इलेक्ट्रॉन और कृष्णिका

शॉर्टकट: मतभेद, समानता, समानता गुणांक, संदर्भ

इलेक्ट्रॉन और कृष्णिका के बीच अंतर

इलेक्ट्रॉन vs. कृष्णिका

इलेक्ट्रॉन या विद्युदणु (प्राचीन यूनानी भाषा: ἤλεκτρον, लैटिन, अंग्रेज़ी, फ्रेंच, स्पेनिश: Electron, जर्मन: Elektron) ऋणात्मक वैद्युत आवेश युक्त मूलभूत उपपरमाणविक कण है। यह परमाणु में नाभिक के चारो ओर चक्कर लगाता हैं। इसका द्रव्यमान सबसे छोटे परमाणु (हाइड्रोजन) से भी हजारगुना कम होता है। परम्परागत रूप से इसके आवेश को ऋणात्मक माना जाता है और इसका मान -१ परमाणु इकाई (e) निर्धारित किया गया है। इस पर 1.6E-19 कूलाम्ब परिमाण का ऋण आवेश होता है। इसका द्रव्यमान 9.11E−31 किग्रा होता है जो प्रोटॉन के द्रव्यमान का लगभग १८३७ वां भाग है। किसी उदासीन परमाणु में विद्युदणुओं की संख्या और प्रोटानों की संख्या समान होती है। इनकी आंतरिक संरचना ज्ञात नहीं है इसलिए इसे प्राय:मूलभूत कण माना जाता है। इनकी आंतरिक प्रचक्रण १/२ होती है, अतः यह फर्मीय होते हैं। इलेक्ट्रॉन का प्रतिकणपोजीट्रॉन कहलाता है। द्रव्यमान के अलावा पोजीट्रॉन के सारे गुण यथा आवेश इत्यादि इलेक्ट्रॉन के बिलकुल विपरीत होते हैं। जब इलेक्ट्रॉन और पोजीट्रॉन की टक्कर होती है तो दोंनो पूर्णतः नष्ट हो जाते हैं एवं दो फोटॉन उत्पन्न होती है। इलेक्ट्रॉन, लेप्टॉन परिवार के प्रथम पीढी का सदस्य है, जो कि गुरुत्वाकर्षण, विद्युत चुम्बकत्व एवं दुर्बल प्रभाव सभी में भूमिका निभाता है। इलेक्ट्रॉन कण एवं तरंग दोनो तरह के व्यवहार प्रदर्शित करता है। बीटा-क्षय के रूप में यह कण जैसा व्यवहार करता है, जबकि यंग का डबल स्लिट प्रयोग (Young's double slit experiment) में इसका किरण जैसा व्यवहार सिद्ध हुआ। चूंकि इसका सांख्यिकीय व्यवहार फर्मिऑन होता है और यह पॉली एक्सक्ल्युसन सिध्दांत का पालन करता है। आइरिस भौतिकविद जॉर्ज जॉनस्टोन स्टोनी (George Johnstone Stoney) ने १८९४ में एलेक्ट्रों नाम का सुझाव दिया था। विद्युदणु की कण के रूप में पहचान १८९७ में जे जे थॉमसन (J J Thomson) और उनकी विलायती भौतिकविद दल ने की थी। कइ भौतिकीय घटनाएं जैसे-विध्युत, चुम्बकत्व, उष्मा चालकता में विद्युदणु की अहम भूमिका होती है। जब विद्युदणु त्वरित होता है तो यह फोटान के रूप मेंऊर्जा का अवशोषण या उत्सर्जन करता है।प्रोटॉन व न्यूट्रॉन के साथ मिलकर यह्परमाणु का निर्माण करता है।परमाणु के कुल द्रव्यमान में विद्युदणु का हिस्सा कम से कम् 0.0६ प्रतिशत होता है। विद्युदणु और प्रोटॉन के बीच लगने वाले कुलाम्ब बल (coulomb force) के कारण विद्युदणु परमाणु से बंधा होता है। दो या दो से अधिक परमाणुओं के विद्युदणुओं के आपसी आदान-प्रदान या साझेदारी के कारण रासायनिक बंध बनते हैं। ब्रह्माण्ड में अधिकतर विद्युदणुओं का निर्माण बिग-बैंग के दौरान हुआ है, इनका निर्माण रेडियोधर्मी समस्थानिक (radioactive isotope) से बीटा-क्षय और अंतरिक्षीय किरणो (cosmic ray) के वायुमंडल में प्रवेश के दौरान उच्च ऊर्जा टक्कर के कारण भी होता है।. जैसे-जैसे तापमान कम होता है, कृष्णिका का विकिरण कर्व कम तीव्रता और लंबे तरंगदैर्घ्य की ओर बढ़ता है। कृष्णिका का विकिरण ग्राफ भी रेले और जीन्स के शास्त्रीय मॉडल के साथ तुलनीय होता है। कृष्णिका का रंग (वार्णिकता) कृष्णिका के तापमान पर निर्भर करता है, जैसे ऐसे रंग का ठिकाने की CIE 1931 एक्स, वाई अंतरिक्ष में यहां दिखाया गया है, जिसे प्लैंकियान लोकस के रूप में जाना जाता है। भौतिक विज्ञान में कृष्णिका पदार्थ की एक आदर्शीकृत अवस्था है, जो अपने ऊपर पड़ने वाले सभी विद्युत चुम्बकीय विकिरण अवशोषित कर लेता है। कृष्णिका एक विशेष और सतत वर्णक्रम (स्पेक्ट्रम) में विकिरण को अवशोषित और गर्म होने पर फिर से उत्सर्जित ‍करते हैं। क्योंकि कोई भी प्रकाश (दृश्य विद्युत चुम्बकीय विकिरण) परिलक्षित या संचरित नहीं होता है और वस्तु जब ठंडी होती है, तो काली दिखाई देती है। हालांकि एक कृष्णिका तापमान पर निर्भर प्रकाश वर्णक्रम का उत्सर्जन करता है। कृष्णिका से निकले इस सौर विकिरण को कृष्णिका विकिरण कहा जाता है। कृष्णिका के वर्णक्रम में तरंग की लंबाई (तरंगदैर्घ्य) जितनी छोटी होती है, आवृत्ति उतनी ही ज्यादा होती है और उच्च आवृत्ति उच्च तापमान से संबंधित होती है। इस प्रकार, एक गर्म वस्तु का रंग वर्णक्रम के नीले अंत के करीब होता है और एक ठंडी वस्तु का रंग लाल के करीब होता है। कमरे के तापमान पर, कृष्णिका ज्यादातर अवरक्त (इंफ्रारेड) तरंगदैर्घ्य फेंकते हैं, लेकिन तापमान के कुछ सौ डिग्री सेल्सियस बढ़ जाने पर कृष्णिका दृश्य तरंगदैर्घ्य उत्सर्जित करते हैं, जो तापमान बढ़ने के साथ ही लाल, नारंगी, पीले, उजले, नीले दिखते हैं। वस्तु के सफेद होने तक वह पर्याप्त मात्रा में पराबैंगनी विकिरण उत्सर्जित करती है। "कृष्णिका" शब्द 1860 मेंगुस्ताव किर्चाफ के द्वारा शुरू किया गया। जब इसका यौगिक विशेषण के रूप में प्रयोग किया जाता है, तो यह शब्द आम तौर पर "कृष्णिका विकिरण" या " ब्लैकबॉडी रेडियेशन" के रूप में एक शब्द में संयुक्त हो जाता है। कृष्णिका उत्सर्जन एक निरंतर जारी रहने वाले क्षेत्र के सौर संतुलनस्थिति की अंतर्दृष्टि प्रदान करता है। शास्त्रीय भौतिकी में सौर संतुलन में प्रत्येक अलग-अलग फूरियर मोड में समान ऊर्जा होनी चाहिए। इस दृष्टिकोण से एक विरोधाभास पैदा हुआ, जिसे पराबैंगनी आपदा के रूप में जाना जाता है और जिसमें सतत जारी रहने वाले क्षेत्र में ऊर्जा की एक अपार मात्रा होती है। कृष्णिका सौर संतुलन के गुणों का परीक्षण कर सकते हैं, क्योंकि वे जो सूर्य की किरणों द्वारा वितरित किये जाने वाले विकिरण उत्सर्जित करते हैं। ऐतिहासिक रूप से कृष्णिका के नियमों का अध्ययन करने से ही क्वांटम यांत्रिकी की अवधारणा आई। .

इलेक्ट्रॉन और कृष्णिका के बीच समानता

इलेक्ट्रॉन और कृष्णिका आम में 0 बातें हैं (यूनियनपीडिया में)।

सूची के ऊपर निम्न सवालों के जवाब

इलेक्ट्रॉन और कृष्णिका के बीच तुलना

इलेक्ट्रॉन 31 संबंध है और कृष्णिका 9 है। वे आम 0 में है, समानता सूचकांक 0.00% है = 0 / (31 + 9)।

संदर्भ

यह लेख इलेक्ट्रॉन और कृष्णिका के बीच संबंध को दर्शाता है। जानकारी निकाला गया था, जिसमें से एक लेख का उपयोग करने के लिए, कृपया देखें:

अरे! अब हम फेसबुक पर हैं! »