अपरिमेय संख्या और यूक्लिड
शॉर्टकट: मतभेद, समानता, समानता गुणांक, संदर्भ।
अपरिमेय संख्या और यूक्लिड के बीच अंतर
अपरिमेय संख्या vs. यूक्लिड
गणित में, अपरिमेय संख्या (irrational number) वह वास्तविक संख्या है जो परिमेय नहीं है, अर्थात् जिसे भिन्न p /q के रूप में व्यक्त नहीं किया जा सकता है, जहां p और q पूर्णांक हैं, जिसमें q गैर-शून्य है और इसलिए परिमेय संख्या नहीं है। अनौपचारिक रूप से, इसका मतलब है कि एक अपरिमेय संख्या को एक सरल भिन्न के रूप में प्रदर्शित नहीं किया जा सकता। उदाहरण के लिये २ का वर्गमूल, और पाई अपरिमेय संख्याएँ हैं। यह साबित हो सकता है कि अपरिमेय संख्याएं विशिष्ट रूप से ऐसी वास्तविक संख्याएं हैं जिन्हें समापक या सतत दशमलव के रूप में नहीं दर्शाया जा सकता है, हालांकि गणितज्ञ इसे परिभाषा के रूप में नहीं लेते हैं। कैंटर प्रमाण के परिणामस्वरूप कि वास्तविक संख्याएं अगणनीय हैं (और परिमेय गणनीय) यह मानता है कि लगभग सभी वास्तविक संख्याएं अपरिमेय हैं। शायद, सर्वाधिक प्रसिद्ध अपरिमेय संख्याएं हैं π, e और √२. यूक्लिड यूक्लिड (Euclid; 300 ईसा पूर्व), या उकलैदिस, प्राचीन यूनान का एक गणितज्ञ था। उसे "ज्यामिति का जनक" कहा जाता है। उसकी एलिमेण्ट्स (Elements) नामक पुस्तक गणित के इतिहास में सफलतम् पुस्तक है। इस पुस्तक में कुछ गिने-चुने स्वयंसिद्धों (axioms) के आधार पर ज्यामिति के बहुत से सिद्धान्त निष्पादित (deduce) किये गये हैं। इनके नाम पर ही इस तरह की ज्यामिति का नाम यूक्लिडीय ज्यामिति पड़ा। हजारों वर्षों बाद भी गणितीय प्रमेयों को सिद्ध करने की यूक्लिड की विधि सम्पूर्ण गणित का रीढ़ बनी हुई यूक्लिड ने शांकवों, गोलीय ज्यामिति और संभवत: द्विघातीय तलों पर भी पुस्तकें लिखीं। .
अपरिमेय संख्या और यूक्लिड के बीच समानता
अपरिमेय संख्या और यूक्लिड आम में एक बात है (यूनियनपीडिया में): गणित।
पुणे में आर्यभट की मूर्ति ४७६-५५० गणित ऐसी विद्याओं का समूह है जो संख्याओं, मात्राओं, परिमाणों, रूपों और उनके आपसी रिश्तों, गुण, स्वभाव इत्यादि का अध्ययन करती हैं। गणित एक अमूर्त या निराकार (abstract) और निगमनात्मक प्रणाली है। गणित की कई शाखाएँ हैं: अंकगणित, रेखागणित, त्रिकोणमिति, सांख्यिकी, बीजगणित, कलन, इत्यादि। गणित में अभ्यस्त व्यक्ति या खोज करने वाले वैज्ञानिक को गणितज्ञ कहते हैं। बीसवीं शताब्दी के प्रख्यात ब्रिटिश गणितज्ञ और दार्शनिक बर्टेंड रसेल के अनुसार ‘‘गणित को एक ऐसे विषय के रूप में परिभाषित किया जा सकता है जिसमें हम जानते ही नहीं कि हम क्या कह रहे हैं, न ही हमें यह पता होता है कि जो हम कह रहे हैं वह सत्य भी है या नहीं।’’ गणित कुछ अमूर्त धारणाओं एवं नियमों का संकलन मात्र ही नहीं है, बल्कि दैनंदिन जीवन का मूलाधार है। .
अपरिमेय संख्या और गणित · गणित और यूक्लिड · और देखें »
सूची के ऊपर निम्न सवालों के जवाब
- क्या अपरिमेय संख्या और यूक्लिड लगती में
- यह आम अपरिमेय संख्या और यूक्लिड में है क्या
- अपरिमेय संख्या और यूक्लिड के बीच समानता
अपरिमेय संख्या और यूक्लिड के बीच तुलना
अपरिमेय संख्या 34 संबंध है और यूक्लिड 16 है। वे आम 1 में है, समानता सूचकांक 2.00% है = 1 / (34 + 16)।
संदर्भ
यह लेख अपरिमेय संख्या और यूक्लिड के बीच संबंध को दर्शाता है। जानकारी निकाला गया था, जिसमें से एक लेख का उपयोग करने के लिए, कृपया देखें: