हम Google Play स्टोर पर Unionpedia ऐप को पुनर्स्थापित करने के लिए काम कर रहे हैं
🌟हमने बेहतर नेविगेशन के लिए अपने डिज़ाइन को सरल बनाया!
Instagram Facebook X LinkedIn

अपरिमेय संख्या और आर्यभट

शॉर्टकट: मतभेद, समानता, समानता गुणांक, संदर्भ

अपरिमेय संख्या और आर्यभट के बीच अंतर

अपरिमेय संख्या vs. आर्यभट

गणित में, अपरिमेय संख्या (irrational number) वह वास्तविक संख्या है जो परिमेय नहीं है, अर्थात् जिसे भिन्न p /q के रूप में व्यक्त नहीं किया जा सकता है, जहां p और q पूर्णांक हैं, जिसमें q गैर-शून्य है और इसलिए परिमेय संख्या नहीं है। अनौपचारिक रूप से, इसका मतलब है कि एक अपरिमेय संख्या को एक सरल भिन्न के रूप में प्रदर्शित नहीं किया जा सकता। उदाहरण के लिये २ का वर्गमूल, और पाई अपरिमेय संख्याएँ हैं। यह साबित हो सकता है कि अपरिमेय संख्याएं विशिष्ट रूप से ऐसी वास्तविक संख्याएं हैं जिन्हें समापक या सतत दशमलव के रूप में नहीं दर्शाया जा सकता है, हालांकि गणितज्ञ इसे परिभाषा के रूप में नहीं लेते हैं। कैंटर प्रमाण के परिणामस्वरूप कि वास्तविक संख्याएं अगणनीय हैं (और परिमेय गणनीय) यह मानता है कि लगभग सभी वास्तविक संख्याएं अपरिमेय हैं। शायद, सर्वाधिक प्रसिद्ध अपरिमेय संख्याएं हैं π, e और √२. आर्यभट (४७६-५५०) प्राचीन भारत के एक महान ज्योतिषविद् और गणितज्ञ थे। इन्होंने आर्यभटीय ग्रंथ की रचना की जिसमें ज्योतिषशास्त्र के अनेक सिद्धांतों का प्रतिपादन है। इसी ग्रंथ में इन्होंने अपना जन्मस्थान कुसुमपुर और जन्मकाल शक संवत् 398 लिखा है। बिहार में वर्तमान पटना का प्राचीन नाम कुसुमपुर था लेकिन आर्यभट का कुसुमपुर दक्षिण में था, यह अब लगभग सिद्ध हो चुका है। एक अन्य मान्यता के अनुसार उनका जन्म महाराष्ट्र के अश्मक देश में हुआ था। उनके वैज्ञानिक कार्यों का समादर राजधानी में ही हो सकता था। अतः उन्होंने लम्बी यात्रा करके आधुनिक पटना के समीप कुसुमपुर में अवस्थित होकर राजसान्निध्य में अपनी रचनाएँ पूर्ण की। .

अपरिमेय संख्या और आर्यभट के बीच समानता

अपरिमेय संख्या और आर्यभट आम में 5 बातें हैं (यूनियनपीडिया में): द्विघात समीकरण, पाई, समीकरण, वर्गमूल, वितत भिन्न

द्विघात समीकरण

वर्ग समीकरण x^2 -5 x + 6 .

अपरिमेय संख्या और द्विघात समीकरण · आर्यभट और द्विघात समीकरण · और देखें »

पाई

ग्रीक अक्षर '''पाई''' यदि किसी वृत्त का व्यास '''१''' हो तो उसकी परिधि '''पाई''' के बराबर होगी. पाई या π एक गणितीय नियतांक है जिसका संख्यात्मक मान किसी वृत्त की परिधि और उसके व्यास के अनुपात के बराबर होता है। इस अनुपात के लिये π संकेत का प्रयोग सर्वप्रथम सन् १७०६ में विलियम जोन्स ने सुझाया। इसका मान लगभग 3.14159 के बराबर होता है। यह एक अपरिमेय राशि है। पाई सबसे महत्वपूर्ण गणितीय एवं भौतिक नियतांकों में से एक है। गणित, विज्ञान एवं इंजीनियरी के बहुत से सूत्रों में π आता है। .

अपरिमेय संख्या और पाई · आर्यभट और पाई · और देखें »

समीकरण

---- समीकरण (equation) प्रतीकों की सहायता से व्यक्त किया गया एक गणितीय कथन है जो दो वस्तुओं को समान अथवा तुल्य बताता है। यह कहना अतिशयोक्ति नहीं होगी कि आधुनिक गणित में समीकरण सर्वाधिक महत्वपूर्ण विषय है। आधुनिक विज्ञान एवं तकनीकी में विभिन्न घटनाओं (फेनामेना) एवं प्रक्रियाओं का गणितीय मॉडल बनाने में समीकरण ही आधारका काम करने हैं। समीकरण लिखने में समता चिन्ह का प्रयोग किया जाता है। यथा- समीकरण प्राय: दो या दो से अधिक व्यंजकों (expressions) की समानता को दर्शाने के लिये प्रयुक्त होते हैं। किसी समीकरण में एक या एक से अधिक चर राशि (यां) (variables) होती हैं। चर राशि के जिस मान के लिये समीकरण के दोनो पक्ष बराबर हो जाते हैं, वह/वे मान समीकरण का हल या समीकरण का मूल (roots of the equation) कहलाता/कहलाते है। ऐसा समीकरण जो चर राशि के सभी मानों के लिये संतुष्ट होता है, उसे सर्वसमिका (identity) कहते हैं। जैसे - एक सर्वसमिका है। जबकि एक समीकरण है जिसका मूल हैं x.

अपरिमेय संख्या और समीकरण · आर्यभट और समीकरण · और देखें »

वर्गमूल

संख्या के साथ उसके वर्गमूल का आलेख गणित में किसी संख्या x का वर्गमूल (square root (\sqrt) या x^) वह संख्या (r) होती है जिसका वर्ग करने पर x प्राप्त होता है; अर्थात् यदि r‍‍2 .

अपरिमेय संख्या और वर्गमूल · आर्यभट और वर्गमूल · और देखें »

वितत भिन्न

गणित में निम्नलिखित प्रकार के व्यंजक (expression) को वितत भिन्न (continued fraction) कहते हैं। यहाँ, a0 एक पूर्णांक है तथान्य सभी संख्याएँ ai (i ≠ 0) धनात्मक पूर्णांक हैं। यदि उपरोक्त वितत भिन्न में अंश एवं हर का मान कुछ भी होने की स्वतंत्रता दे दी जाय (जैसे फलन होने की छूट) तो इसे 'सामान्यीकृत वितत भिन्न' कह सकते हैं। .

अपरिमेय संख्या और वितत भिन्न · आर्यभट और वितत भिन्न · और देखें »

सूची के ऊपर निम्न सवालों के जवाब

अपरिमेय संख्या और आर्यभट के बीच तुलना

अपरिमेय संख्या 34 संबंध है और आर्यभट 87 है। वे आम 5 में है, समानता सूचकांक 4.13% है = 5 / (34 + 87)।

संदर्भ

यह लेख अपरिमेय संख्या और आर्यभट के बीच संबंध को दर्शाता है। जानकारी निकाला गया था, जिसमें से एक लेख का उपयोग करने के लिए, कृपया देखें: