हम Google Play स्टोर पर Unionpedia ऐप को पुनर्स्थापित करने के लिए काम कर रहे हैं
🌟हमने बेहतर नेविगेशन के लिए अपने डिज़ाइन को सरल बनाया!
Instagram Facebook X LinkedIn

अति परवलय और समीकरण

शॉर्टकट: मतभेद, समानता, समानता गुणांक, संदर्भ

अति परवलय और समीकरण के बीच अंतर

अति परवलय vs. समीकरण

एक अति परवलय का ग्राफ. गणित में अतिपरवलय एक ऐसा शांकव होता है जिसकी उत्केन्द्रता इकाई से अधिक होती है। एक अन्य परिभाषा के अनुसार अतिपरवलय ऐसे बिन्दुओं का बिन्दुपथ है जिनकी दो निश्चित बिन्दुओं से दूरियों का अंतर सदैव अचर रहता है। इन निश्चित बिन्दुओं को अतिपरवलय की नाभियाँ(focus) कहते हैं। एक अतिपरवलय, एक द्विविमीय समतलीय वक्र है, जो इसके ज्यामितीय गुणों या समीकरणों द्वारा परिभाषित किया जाता है। एक अतिपरवलय में दो भाग होते हैं, जिन्हें संयुग्मी घटक कहा जाता है, जो एक-दूसरे की दर्पण छवियां होती हैं और दोनों अनंत लंबे धनुष की तरह होती हैं। अतिपरवलय, शंकु परिच्छेद के तीन प्रकारों में से एक है, जो एक समतल और एक द्विशंकु द्वारा प्रतिच्छेदन पर निर्मित होता है। (अन्य शंकु परिच्छेद परवलय और दीर्घवृत्त हैं। एक वृत्त एक दीर्घवृत्त का एक विशेष रूप है।) यदि एक समतल, एक द्विशंकु के दोनों हिस्सों को प्रतिच्छेद करता है लेकिन वह समतल शंकुओं के शीर्ष से नहीं गुजरता है, तो शांकव एक अतिपरवलय होता है ।एक अतिपरवलय दो भागों वाला एक खुला वक्र होता है, जो एक समतल द्वारा किसी द्विशंकु के दोनों भागों को प्रतिच्छेदित करने पर बनता है (बशर्ते यह समतल शंकुओं की अक्ष के समांतर न हो)। प्रत्येक स्थिति में, अतिपरवलय सममित होता है। . ---- समीकरण (equation) प्रतीकों की सहायता से व्यक्त किया गया एक गणितीय कथन है जो दो वस्तुओं को समान अथवा तुल्य बताता है। यह कहना अतिशयोक्ति नहीं होगी कि आधुनिक गणित में समीकरण सर्वाधिक महत्वपूर्ण विषय है। आधुनिक विज्ञान एवं तकनीकी में विभिन्न घटनाओं (फेनामेना) एवं प्रक्रियाओं का गणितीय मॉडल बनाने में समीकरण ही आधारका काम करने हैं। समीकरण लिखने में समता चिन्ह का प्रयोग किया जाता है। यथा- समीकरण प्राय: दो या दो से अधिक व्यंजकों (expressions) की समानता को दर्शाने के लिये प्रयुक्त होते हैं। किसी समीकरण में एक या एक से अधिक चर राशि (यां) (variables) होती हैं। चर राशि के जिस मान के लिये समीकरण के दोनो पक्ष बराबर हो जाते हैं, वह/वे मान समीकरण का हल या समीकरण का मूल (roots of the equation) कहलाता/कहलाते है। ऐसा समीकरण जो चर राशि के सभी मानों के लिये संतुष्ट होता है, उसे सर्वसमिका (identity) कहते हैं। जैसे - एक सर्वसमिका है। जबकि एक समीकरण है जिसका मूल हैं x.

अति परवलय और समीकरण के बीच समानता

अति परवलय और समीकरण आम में 0 बातें हैं (यूनियनपीडिया में)।

सूची के ऊपर निम्न सवालों के जवाब

अति परवलय और समीकरण के बीच तुलना

अति परवलय 7 संबंध है और समीकरण 11 है। वे आम 0 में है, समानता सूचकांक 0.00% है = 0 / (7 + 11)।

संदर्भ

यह लेख अति परवलय और समीकरण के बीच संबंध को दर्शाता है। जानकारी निकाला गया था, जिसमें से एक लेख का उपयोग करने के लिए, कृपया देखें: