लोगो
यूनियनपीडिया
संचार
Google Play पर पाएं
नई! अपने एंड्रॉयड डिवाइस पर डाउनलोड यूनियनपीडिया!
डाउनलोड
ब्राउज़र की तुलना में तेजी से पहुँच!
 

सदिश क्षेत्र

सूची सदिश क्षेत्र

सदिश कलन (वेक्टर कैल्कुलस) में सदिश क्षेत्र (vector field) किसी दिक् (स्पेस) के हर बिन्दु-स्थान को एक सदिश राशि देने की क्रिया को कहा जाता है, यानि कि इसमें प्रत्येक स्थान से एक राशि और एक दिशा सम्बन्धित की जाती है। सदिश क्षेत्र कई भौतिक चीज़ों को समझने के लिये बहुत लाभकारी है, मसलन पानी के बहाव को परिभाषित करने के लिये उस द्रव में स्थित हर स्थान के साथ एक दिशा और एक राशि लगाई जा सकती है जिससे यह समझा जा सकता है कि उस प्रवाह के अलग-अलग भागों पर क्या बल काम कर रहा है। इसी तरह किसी चुम्बकीय क्षेत्र को भी एक सदिश क्षेत्र द्वारा दर्शा कर उसे समझा जा सकता है। .

5 संबंधों: दिक्, द्रव, बल (भौतिकी), सदिश राशि, सदिश कलन

दिक्

तीन आयाम या डिमॅनशन वाली दिक् में तीन निर्देशांकों से किसी भी बिंदु के स्थान का पता चल जाता है दिक् जगह के उस विस्तार या फैलाव को कहते हैं जिसमें वस्तुओं का अस्तित्व होता है और घटनाएँ घटती हैं। मनुष्यों के नज़रिए से दिक् के तीन पहलू होते हैं, जिन्हें आयाम या डिमॅनशन भी कहते हैं - ऊपर-नीचे, आगे-पीछे और दाएँ-बाएँ। .

नई!!: सदिश क्षेत्र और दिक् · और देखें »

द्रव

द्रव का कोई निश्चित आकार नहीं होता। द्रव जिस पात्र में रखा जाता है उसी का आकार ग्रहण कर लेता है। प्रकृति में सभी रासायनिक पदार्थ साधारणत: ठोस, द्रव और गैस तथा प्लाज्मा - इन चार अवस्थाओं में पाए जाते हैं। द्रव और गैस प्रवाहित हो सकते हैं, किंतु ठोस प्रवाहित नहीं होता। लचीले ठोस पदार्थों में आयतन अथवा आकार को विकृत करने से प्रतिबल उत्पन्न होता है। अल्प विकृतियों के लिए विकृति और प्रतिबल परस्पर समानुपाती होते हैं। इस गुण के कारण लचीले ठोस एक निश्चित मान तक के बाहरी बलों को सँभालने की क्षमता रखते हैं। प्रवाह का गुण होने के कारण द्रवों और गैसों को तरल पदार्थ (fluid) कहा जाता है। ये पदार्थ कर्तन (shear) बलों को सँभालने में अक्षम होते हैं और गुरुत्वाकर्षण के प्रभाव के कारण प्रवाहित होकर जिस बरतन में रखे रहते हैं, उसी का आकार धारण कर लेते हैं। ठोस और तरल का यांत्रिक भेद बहुत स्पष्ट नहीं है। बहुत से पदार्थ, विशेषत: उच्च कोटि के बहुलक (polymer) के यांत्रिक गुण, श्यान तरल (viscous fluid) और लचीले ठोस के गुणों के मध्यवर्ती होते हैं। प्रत्येक पदार्थ के लिए एक ऐसा क्रांतिक ताप (critical temperature) पाया जाता है, जिससे अधिक होने पर पदार्थ केवल तरल अवस्था में रह सकता है। क्रांतिक ताप पर पदार्थ की द्रव और गैस अवस्था में विशेष अंतर नहीं रह जाता। इससे नीचे के प्रत्येक ताप पर द्रव के साथ उसका कुछ वाष्प भी उपस्थित रहता है और इस वाष्प का कुछ निश्चित दबाव भी होता है। इस दबाव को वाष्प दबाव कहते हैं। प्रत्येक ताप पर वाष्प दबाव का अधिकतम मान निश्चित होता है। इस अधिकतम दबाव को संपृक्त-वाष्प-दबाव के बराबर अथवा उससे अधिक हो, तो द्रव स्थायी रहता है। यदि ऊपरी दबाव द्रव के संपृक्तवाष्प-दबाव से कम हो, तो द्रव अस्थायी होता है। संपृक्त-वाष्प-दबाव ताप के बढ़ने से बढ़ता है। जिस ताप पर द्रव का संपृक्त-वाष्प-दबाव बाहरी वातावरण के दबाव के बराबर हो जाता है, उसपर द्रव बहुत तेजी से वाष्पित होने लगता है। इस ताप को द्रव का क्वथनांक (boiling point) कहते हैं। यदि बाहरी दबाव सर्वथा स्थायी हो तो क्वथनांक से नीचे द्रव स्थायी रहता है। क्वथनांक पर पहुँचने पर यह खौलने लगता है। इस दशा में यह ताप का शोषण करके द्रव अवस्था से गैस अवस्था में परिवर्तित होने लगता है। क्वथनांक पर द्रव के इकाई द्रव्यमान को द्रव से पूर्णत: गैस में परिवर्तित करने के लिए जितने कैलोरी ऊष्मा की आवश्यकता होती है, उसे द्रव के वाष्पीभवन की गुप्त ऊष्मा कहते हैं। विभिन्न द्रव पदार्थों के लिए इसका मान भिन्न होता है। एक नियत दबाव पर ठोस और द्रव दोनों रूप साथ साथ एक निश्चित ताप पर पाए जा सकते हैं। यह ताप द्रव का हिमबिंदु या ठोस का द्रवणांक कहलाता है। द्रवणांक पर पदार्थ के इकाई द्रव्यमान को ठोस से पूर्णत: द्रव में परिवर्तित करने में जितनी ऊष्मा की आवश्यकता होती है, उसे ठोस के गलन की गुप्त ऊष्मा कहते हैं। अक्रिस्टली पदार्थों के लिए कोई नियत गलनांक नहीं पाया जाता। वे गरम करने पर धीरे धीरे मुलायम होते जाते हैं और फिर द्रव अवस्था में आ जाते हैं। काँच तथा काँच जैसे अन्य पदार्थ इसी प्रकार का व्यवहार करते हैं। एक नियत ताप और नियत दबाव पर प्रत्येक द्रव्य की तीनों अवस्थाएँ एक साथ विद्यमान रह सकती हैं। दबाव और ताप के बीच खीचें गए आरेख (diagram) में ये नियत ताप और दबाव एक बिंदु द्वारा प्रदर्शित किए जाते हैं। इस बिंदु को द्रव का त्रिक् बिंदु (triple point) कहते हैं। त्रिक् विंदु की अपेक्षा निम्न दाबों पर द्रव अस्थायी रहता है। यदि किसी ठोस को त्रिक् विंदु की अपेक्षा निम्न दबाव पर रखकर गरम किया जाए तो वह बिना द्रव बने ही वाष्प में परिवर्तित हो जाता है, अर्थात् ऊर्ध्वपातित (sublime) हो जाता है। द्रव के मुक्त तल में, जो उस द्रव के वाष्प या सामान्य वायु के संपर्क में रहता है, एक विशेष गुण पाया जाता है, जिसके कारण यह तल तनी हुई महीन झिल्ली जैसा व्यवहार करता है। इस गुण को पृष्ठ तनाव (surface tension) कहते हैं। पृष्ठ तनाव के कारण द्रव के पृष्ठ का क्षेत्रफल यथासंभव न्यूनतम होता है। किसी दिए आयतन के लिए सबसे कम क्षेत्रफल एक गोले का होता है। अत: ऐसी स्थितियों में जब कि बाहरी बल नगण्य माने जा सकते हों द्रव की बूँदे गोल होती हैं। जब कोई द्रव किसी ठोस, या अन्य किसी अमिश्रय द्रव, के संपर्क में आता है तो भी संपर्क तल पर तनाव उत्पन्न होता है। साधारणत: कोई भी पदार्थ केवल एक ही प्रकार के द्रव रूप में प्राप्त होता है, किंतु इसके कुछ अपवाद भी मिलते हैं, जैसे हीलियम गैस को द्रवित करके दो प्रकार के हीलियम द्रव प्राप्त किए जा सकते हैं। उसी प्रकार पैरा-ऐज़ॉक्सी-ऐनिसोल (Para-azoxy-anisole) प्रकाशत: विषमदैशिक (anisotropic) द्रव के रूप में, क्रिस्टलीय अवस्था में तथा सामान्य द्रव के रूप में भी प्राप्त हो सकता है। .

नई!!: सदिश क्षेत्र और द्रव · और देखें »

बल (भौतिकी)

बल अनेक प्रकार के होते हैं जैसे- गुरुत्वीय बल, विद्युत बल, चुम्बकीय बल, पेशीय बल (धकेलना/खींचना) आदि। भौतिकी में, बल एक सदिश राशि है जिससे किसी पिण्ड का वेग बदल सकता है। न्यूटन के गति के द्वितीय नियम के अनुसार, बल संवेग परिवर्तन की दर के अनुपाती है। बल से त्रिविम पिण्ड का विरूपण या घूर्णन भी हो सकता है, या दाब में बदलाव हो सकता है। जब बल से कोणीय वेग में बदलाव होता है, उसे बल आघूर्ण कहा जाता है। प्राचीन काल से लोग बल का अध्ययन कर रहे हैं। आर्किमिडीज़ और अरस्तू की कुछ धारणाएँ थीं जो न्यूटन ने सत्रहवी सदी में ग़लत साबित की। बीसवी सदी में अल्बर्ट आइंस्टीन ने उनके सापेक्षता सिद्धांत द्वारा बल की आधुनिक अवधारणा दी। प्रकृति में चार मूल बल ज्ञात हैं: गुरुत्वाकर्षण बल, विद्युत चुम्बकीय बल, प्रबल नाभकीय बल और दुर्बल नाभकीय बल। बल की गणितीय परिभाषा है: जहाँ \vec बल, \vec संवेग और t समय हैं। एक ज़्यादा सरल परिभाषा है: जहाँ m द्रव्यमान है और \vec त्वरण है। .

नई!!: सदिश क्षेत्र और बल (भौतिकी) · और देखें »

सदिश राशि

जिस भौतिक राशि में मात्रा (परिमाण) तथा दिशा दोनो निहित होते हैं उन्हें सदिश राशि कहते है। सदिश राशियों के उदाहरण हैं - वेग, बल, संवेग इत्यादि। जिन राशियों में सिर्फ परिमाण होता है उन्हें अदिश राशि कहते हैं, जैसे - चाल, दूरी, द्रव्यमान, आयतन इत्यादि। सदिश राशियों को अदिश से अलग समझने का कारण यह है कि हम कभी-कभी किसी राशि की दिशा का ज्ञान करना आवश्यक होता है। जैसे कि जमीन पर रखे बक्से पर बल किस दिशा में लग रहा है - कितना लग रहा है यह स्पष्टतटा नहीं बताता कि बक्सा खिसकेगा या नहीं। अगर हम बल उपर से नीचे की ओर लगाएं तो बक्सा कितना भी बल लगाने से नहीं खिसकेगा। पर यदि हम इसको क्षैतिज रूप से लगाएं तो एक नियत मात्रा के बल के बाद यह खिसकने लगेगा। गणित तथा भौतिक विज्ञान में सदिशों के बहुत उपयोग हैं। .

नई!!: सदिश क्षेत्र और सदिश राशि · और देखें »

सदिश कलन

सदिश कलन या सदिश कैल्कुलस या सदिश विश्लेषण (Vector calculus / vector analysis) गणित की वह विधा है जो सदिश राशियों के वास्तविक विश्लेषण (real analysis) से सम्बन्ध रखती है। इसके अन्तर्गत बहुत सी समस्याएं हल करने की विधियाँ एवं सूत्र आते हैं जो कि प्रौद्योगिकी एवं विज्ञान में बहुत उपयोगी हैं। अमेरिकी वैज्ञानिक एवं इंजीनियर विलार्ड गिब्स (J. Willard Gibbs) तथा ब्रिटिश इंजीनियर हेवीसाइड (Oliver Heaviside) ने इस क्षेत्र के अग्रदूत रहे। सदिश विश्लेषण अदिश क्षेत्र तथा सदिश क्षेत्र के साथ गहरा सम्बन्ध है। अदिश क्षेत्रः (scalar field) के प्रत्येक बिन्दु के साथ एक अदिश राशि सम्बन्धित होती है। जबकि सदिश क्षेत्र (vector field) के प्रत्येक बिन्दु पर एक सदिश राशि जुड़ी होती है।; उदाहरण किसी तालाब का तापमान एक अदिश क्षेत्र है क्योंकि इसके अन्तर्गत प्रत्येक बिन्दु पर एक अदिश राशि - तापमान का अस्तित्व है। इसके विपरीत यदि तालाब का पानी गतिशील है तो इसके हरेक बिन्दु पर जल का वेग एक सदिश क्षेत्र है। .

नई!!: सदिश क्षेत्र और सदिश कलन · और देखें »

निवर्तमानआने वाली
अरे! अब हम फेसबुक पर हैं! »