लोगो
यूनियनपीडिया
संचार
Google Play पर पाएं
नई! अपने एंड्रॉयड डिवाइस पर डाउनलोड यूनियनपीडिया!
मुक्त
ब्राउज़र की तुलना में तेजी से पहुँच!
 

प्रोटॉन

सूची प्रोटॉन

प्राणु संरचना प्राणु (प्रोटॉन) एक धनात्मक विध्युत आवेशयुक्त मूलभूत कण है, जो परमाणु के नाभिक में न्यूट्रॉन के साथ पाया जाता हैं। इसे p प्रतिक चिन्ह द्वारा दर्शाया जाता है। इस पर 1 दो अप-क्वार्क और एक डाउन-क्वार्क से मिलकर बना होता है। स्वतंत्र रूप से यह उदजन आयन H+ के रूप में पाया जाता है। .

16 संबंधों: ट्राइटियम, ड्यूटीरियम, न्यूट्रॉन, परमाणु, फर्मिऑन, ब्रह्माण्ड, बेर्यॉन, बीटा क्षय, मूलकण, हाइड्रोजन, हेड्रॉन, आयन, इलेक्ट्रॉन, क्वार्क, अर्धायु काल, अर्नेस्ट रदरफोर्ड

ट्राइटियम

ट्राइटियम हाइड्रोजन का एक रेडियोधर्मी समस्थानिक होता है। इसे ट्राइटॉन भी कहते हैं। ट्राइटियम के नाभिक में एक प्रोटॉन और दो न्यूट्रॉन होते हैं, जबकि हाइड्रोजन के सबसे प्रचुर मात्रा में उपलब्ध समस्थानिक प्रोटियम में मात्र एक प्रोटॉन ही होता है और न्यूट्रॉन अनुपस्थित होता है।। हिन्दुस्तान लाइव। २ दिसम्बर २००९ इस समस्थानिक का नाम एक ग्रीक शब्द से मिलकर बना है, जिसका अर्थ थर्ड या तृतीय होता है। ट्राइटियम की उत्पत्ति हैवी वाटर मॉडरेट रिएक्टर में ड्यूटीरियम माध्यम में न्यूट्रान के टकराव से होती है।। नवभारत टाइम्स। ७ अक्टूबर २००८ इस प्रक्रिया में कुछ मात्रा में ट्राइटियम बनता है। ट्राइटियम का आण्विक भार ३.०१६०४९२ होता है। मानक तापमान और दबाव पर ट्राइटियम गैस रूप में रहता है। ऑक्सीजन से मिश्रित होने पर यह ये तरल रूप धारण करता है, जिसे ट्राइटीकृत जल (ट्राइटिएटेड वाटर) कहते हैं। ये रबड़, प्लास्टिक और कुछ तरह के इस्पातों के लिए पारगम्य होता है। ट्राइटियम की खोज १९२० में वाल्टर रसेल ने की थी। वहीं विल्फर्ड एफ. लिबी ने यह खोज की थी कि ट्राइटियम का प्रयोग डेटिंग वाटर की तरह किया जा सकता है, जो मदिरा उत्पादन के लिए निर्माण किया जाता है। हाइड्रोजन की तरह ट्राइटियम को सीमाबद्ध नहीं किया जा सकता। ट्राइटियम और ड्यूटेरियम को परमाणु ईंधन की तरह प्रयोग किया जाता है।। दैनिक भास्कर। ३० दिसम्बर २००८ वैज्ञानिकों के अनुसार ये चर्चा का विषय रहा है, कि ट्राइटियम को प्रस्तावित फ़्यूज़न रियेक्टरों में अधिक मात्र में प्रयोग करने पर रेडियोधर्मी प्रदूषण संभव है। विभिन्न देशों में ट्राइटियम के प्रयोग पर निषेध है। सूर्य पर जो प्रक्रियाएँ होती हैं, उन में हाइड्रोजन के दोनों ड्यूटेरियम और ट्राइटियम के अणुओं के मेल से अधिक मात्रा में ऊर्जा पैदा होती है। ड्यूटेरियम और ट्राइटियम के एक ग्राम से उतनी ही ऊर्जा उत्पन होती है जितनी ८ टन तेल से पैदा की जा सकती है।। वॉयस ऑफ रशिया। २ अगस्त २००७ ट्राइटियम लगभग हाइड्रोजन से मिलता जुलता होता है, जिसके कारण यह सरलता से मिलकर कार्बनिक बंध बना लेते हैं। ट्राइटियम बीटा का मजबूत उत्सर्जक नहीं है जिस कारण यह काफी खतरनाक होता है। खाना, पानी और त्वचा द्वारा अवशोषण किए जाने के कारण सांस लेने या खाना खाने के दौरान काफी हानिकारक होता है। File:Tritium-watch.jpg|ट्राईटियम डायल वाली घड़ी File:Trtium.jpg|ट्राइटियम भरी ट्यूबलाइट .

नई!!: प्रोटॉन और ट्राइटियम · और देखें »

ड्यूटीरियम

ड्यूटीरियम अथवा ड्यूटेरियम हाइड्रोजन का एक स्थिर समस्थानिक है। इसकी प्राकृतिक उपलब्धता पृथ्वी के सागरओं में हाइड्रोजन के लगभग एक परमाणु प्रति (~) है। .

नई!!: प्रोटॉन और ड्यूटीरियम · और देखें »

न्यूट्रॉन

न्यूट्रॉन एक आवेश रहित मूलभूत कण है, जो परमाणु के नाभिक में प्रोटॉन के साथ पाये जाते हैं। जेम्स चेडविक ने इनकी खोज की थी। इसे n प्रतीक चिन्ह द्वारा दर्शाया जाता है। श्रेणी:भौतिकी श्रेणी:भौतिक शब्दावली श्रेणी:रसायन शास्त्र.

नई!!: प्रोटॉन और न्यूट्रॉन · और देखें »

परमाणु

एक परमाणु किसी भी साधारण से पदार्थ की सबसे छोटी घटक इकाई है जिसमे एक रासायनिक तत्व के गुण होते हैं। हर ठोस, तरल, गैस, और प्लाज्मा तटस्थ या आयनन परमाणुओं से बना है। परमाणुओं बहुत छोटे हैं; विशिष्ट आकार लगभग 100 pm (एक मीटर का एक दस अरबवें) हैं। हालांकि, परमाणुओं में अच्छी तरह परिभाषित सीमा नहीं होते है, और उनके आकार को परिभाषित करने के लिए अलग अलग तरीके होते हैं जोकि अलग लेकिन काफी करीब मूल्य देते हैं। परमाणुओं इतने छोटे है कि शास्त्रीय भौतिकी इसका काफ़ी गलत परिणाम देते हैं। हर परमाणु नाभिक से बना है और नाभिक एक या एक से अधिक इलेक्ट्रॉन्स से सीमित है। नाभिक आम तौर पर एक या एक से अधिक न्यूट्रॉन और प्रोटॉन की एक समान संख्या से बना है। प्रोटान और न्यूट्रान न्यूक्लिऑन कहलाता है। परमाणु के द्रव्यमान का 99.94% से अधिक भाग नाभिक में होता है। प्रोटॉन पर सकारात्मक विद्युत आवेश होता है, इलेक्ट्रॉन्स पर नकारात्मक विद्युत आवेश होता है और न्यूट्रान पर कोई भी विद्युत आवेश नहीं होता है। एक परमाणु के इलेक्ट्रॉन्स इस विद्युत चुम्बकीय बल द्वारा एक परमाणु के नाभिक में प्रोटॉन की ओर आकर्षित होता है। नाभिक में प्रोटॉन और न्यूट्रॉन एक अलग बल, यानि परमाणु बल के द्वारा एक दूसरे को आकर्षित करते है, जोकि विद्युत चुम्बकीय बल जिसमे सकारात्मक आवेशित प्रोटॉन एक दूसरे से पीछे हट रहे हैं, की तुलना में आम तौर पर शक्तिशाली है। परमाणु के केन्द्र में नाभिक (न्यूक्लिअस) होता है जिसका घनत्व बहुत अधिक होता है। नाभिक के चारो ओर ऋणात्मक आवेश वाले एलेक्ट्रान चक्कर लगाते रहते हैं जिसको एलेक्ट्रान घन (एलेक्ट्रान क्लाउड) कहते हैं। नाभिक, धनात्मक आवेश वाले प्रोटानों एवं अनावेशित (न्यूट्रल) न्यूट्रानों से बना होता है। जब किसी परमाणु में एलेक्ट्रानों की संख्या उसके नाभिक में स्थित प्रोटानों की संख्या के समान होती है तब परमाणु वैद्युकीय दृष्टि से अनावेशित होता है; अन्यथा परमाणु धनावेशित या ऋणावेशित ऑयन के रूप में होता है। आधुनिक रसायनशास्त्र में शताधिक मूल भूत माने गए हैं, जिनमें से कुछ तो धातुएँ हैं जैसे ताँबा, सोना, लोहा, सीसा, चाँदी, राँगा, जस्ता; कुछ और खनिज हैं, जैसे, गंधक, फासफरस, पोटासियम, अंजन, पारा, हड़ताल, तथा कुछ गैस हैं, जैसे, आक्सीजन, नाइट्रोजन, हाइड्रोजन आदि। इन्हीं मूल भूतों के अनुसार परमाणु आधुनिक रसायन में माने जाते हैं। पहले समझा जाता था कि ये अविभाज्य हैं। अब इनके भी टुकड़े कर दिए गए हैं। नाभिक में प्रोटॉन की संख्या किसी रासायनिक तत्व को परिभाषित करता है: जैसे सभी तांबा के परमाणु में 29 प्रोटॉन होते हैं। न्यूट्रॉन की संख्या तत्व के समस्थानिक को परिभाषित करता है। इलेक्ट्रॉनों की संख्या एक परमाणु के चुंबकीय गुण को प्रभावित करता है। परमाणु अणु के रूप में रासायनिक यौगिक बनाने के लिए रासायनिक आबंध द्वारा एक या अधिक अन्य परमाणुओं को संलग्न कर सकते हैं। परमाणु की संघटित और असंघटित करने की क्षमता प्रकृति में हुए बहुत से भौतिक परिवर्तन के लिए जिम्मेदार है, और रसायन शास्त्र के अनुशासन का विषय है। .

नई!!: प्रोटॉन और परमाणु · और देखें »

फर्मिऑन

सांख्यिकीय व्यवहार के आधार पर भौतिकी में कणों को दो भागों में बांटा जाता है: बोसॉन एवं फर्मिऑन। फर्मिऑन (fermion):- वे कण जो फर्मी-डिराक सांख्यिकी के अनुसार व्यवहार करते है, जिनका प्रचक्रण विषम अर्ध पूर्णांक (१/२, ३/२, ----) होता है और जो पाउली अपवर्जन नियम का पालन करते है, फर्मिऑन कहलाते है। मूलकण क्वार्क और लेप्टॉन एवं संयोजित कण प्रोटॉन और न्यूट्रॉन इसके उदाहरण है। .

नई!!: प्रोटॉन और फर्मिऑन · और देखें »

ब्रह्माण्ड

ब्रह्माण्ड सम्पूर्ण समय और अंतरिक्ष और उसकी अंतर्वस्तु को कहते हैं। ब्रह्माण्ड में सभी ग्रह, तारे, गैलेक्सिया, गैलेक्सियों के बीच के अंतरिक्ष की अंतर्वस्तु, अपरमाणविक कण, और सारा पदार्थ और सारी ऊर्जा शामिल है। अवलोकन योग्य ब्रह्माण्ड का व्यास वर्तमान में लगभग 28 अरब पारसैक (91 अरब प्रकाश-वर्ष) है। पूरे ब्रह्माण्ड का व्यास अज्ञात है, और ये अनंत हो सकता है। .

नई!!: प्रोटॉन और ब्रह्माण्ड · और देखें »

बेर्यॉन

बेर्यॉन (baryon):- वे संयोजित कण जो तीन क्वार्क (qqq) से मिलकर बने होते है बेर्यॉन कहलाते है। प्रोटॉन (uud), न्यूट्रॉन (udd), लाम्बडा (uds) और ओमेगा (sss) इसके उदाहरण है। प्रकृति में लगभग १२० प्रकार के बेर्यॉन पाये जाते है।.

नई!!: प्रोटॉन और बेर्यॉन · और देखें »

बीटा क्षय

नाभिकीय भौतिकी में, बीटा क्षय (बीटा-डीके) एक प्रकार का रेडियोधर्मी क्षय होता है, जिसमें बीटा कण (एक विद्युदणु (इलेक्ट्रॉन) या एक धनाणु (पॉज़िट्रॉन)) उत्सर्जित होते हैं। यह दो प्रकार का होता है। विद्युदणु उत्सर्जन होने पर, इसे बीटा-ऋण कहते हैं, जबकि धनाणु उत्सर्जन होने पर इसे बीटा धन कहते हैं। बीटा कणों की गतिज ऊर्जा लगातार वर्णक्रम की होती है और इसका परास शून्य से अधिकतम उपलब्ध ऊर्जा तक होता है। कार्बन-14 का क्षय होकर नाइट्रोजन-14 में बदलना इलेक्ट्रॉन क्षय (electron emission या β− क्षय) का उदाहरण है। इसी प्रकार, मैगनीशियम-23 का क्षय होकर सोडियम-23 में परिवर्तन पॉजिट्रॉन-क्षय या β+ क्षय का उदाहरण है। नीचे दो अन्य उदाहरण दिये गये हैं- बीटा-क्षय का सामान्य सूत्र- .

नई!!: प्रोटॉन और बीटा क्षय · और देखें »

मूलकण

मूलभूत कणों का मानक मॉडल भौतिकी में मूलकण (elementary particle) वे कण हैं, जिनकी कोई उपसंरचना ज्ञात नहीं है। यह किन कणों से मिलकर बना है, अज्ञात है। मूलकण ब्रह्माण्ड की आधारभूत संरचना है, समस्त ब्रह्माण्ड इन्ही मूलभूत कणों से मिलकर बना है। कण भौतिकी के मानक मॉडल (standard model) के अनुसार क्वार्क, लेप्टॉन और गेज बोसॉन मूलकण है। .

नई!!: प्रोटॉन और मूलकण · और देखें »

हाइड्रोजन

हाइड्रोजन पानी का एक महत्वपूर्ण अंग है शुद्ध हाइड्रोजन से भरी गैस डिस्चार्ज ट्यूब हाइड्रोजन (उदजन) (अंग्रेज़ी:Hydrogen) एक रासायनिक तत्व है। यह आवर्त सारणी का सबसे पहला तत्व है जो सबसे हल्का भी है। ब्रह्मांड में (पृथ्वी पर नहीं) यह सबसे प्रचुर मात्रा में पाया जाता है। तारों तथा सूर्य का अधिकांश द्रव्यमान हाइड्रोजन से बना है। इसके एक परमाणु में एक प्रोट्रॉन, एक इलेक्ट्रॉन होता है। इस प्रकार यह सबसे सरल परमाणु भी है। प्रकृति में यह द्विआण्विक गैस के रूप में पाया जाता है जो वायुमण्डल के बाह्य परत का मुख्य संघटक है। हाल में इसको वाहनों के ईंधन के रूप में इस्तेमाल कर सकने के लिए शोध कार्य हो रहे हैं। यह एक गैसीय पदार्थ है जिसमें कोई गंध, स्वाद और रंग नहीं होता है। यह सबसे हल्का तत्व है (घनत्व 0.09 ग्राम प्रति लिटर)। इसकी परमाणु संख्या 1, संकेत (H) और परमाणु भार 1.008 है। यह आवर्त सारणी में प्रथम स्थान पर है। साधारणतया इससे दो परमाणु मिलकर एक अणु (H2) बनाते है। हाइड्रोजन बहुत निम्न ताप पर द्रव और ठोस होता है।।इण्डिया वॉटर पोर्टल।०८-३०-२०११।अभिगमन तिथि: १७-०६-२०१७ द्रव हाइड्रोजन - 253° से.

नई!!: प्रोटॉन और हाइड्रोजन · और देखें »

हेड्रॉन

हेड्रॉन(hadron):- वे सभी कण जो क्वार्क से मिलकर बने होते है हेड्रॉन कहलाते हैं। परमाणु नाभिक, न्यूक्लिऑन, प्रोटॉन, न्यूट्रॉन, मेसॉन, क्वार्क आदि इसके उदाहरण है। श्रेणी:भौतिकी श्रेणी:कण भौतिकी.

नई!!: प्रोटॉन और हेड्रॉन · और देखें »

आयन

आयन (ion) ऐसे परमाणु या अणु है जिसमें इलेक्ट्रानों और प्रोटोनों की संख्या असामान होती है। इस से आयन में विद्युत आवेश (चार्ज) होता है। अगर इलेक्ट्रॉन की तादाद प्रोटोन से अधिक हो तो आयन में ऋणात्मक (नेगेटिव) आवेश होता है और उसे ऋणायन (anion, ऐनायन) भी कहते हैं। इसके विपरीत अगर इलेक्ट्रॉन की तादाद प्रोटोन से कम हो तो आयन में धनात्मक (पोज़िटिव) आवेश होता है और उसे धनायन (cation, कैटायन) भी कहते हैं। .

नई!!: प्रोटॉन और आयन · और देखें »

इलेक्ट्रॉन

इलेक्ट्रॉन या विद्युदणु (प्राचीन यूनानी भाषा: ἤλεκτρον, लैटिन, अंग्रेज़ी, फ्रेंच, स्पेनिश: Electron, जर्मन: Elektron) ऋणात्मक वैद्युत आवेश युक्त मूलभूत उपपरमाणविक कण है। यह परमाणु में नाभिक के चारो ओर चक्कर लगाता हैं। इसका द्रव्यमान सबसे छोटे परमाणु (हाइड्रोजन) से भी हजारगुना कम होता है। परम्परागत रूप से इसके आवेश को ऋणात्मक माना जाता है और इसका मान -१ परमाणु इकाई (e) निर्धारित किया गया है। इस पर 1.6E-19 कूलाम्ब परिमाण का ऋण आवेश होता है। इसका द्रव्यमान 9.11E−31 किग्रा होता है जो प्रोटॉन के द्रव्यमान का लगभग १८३७ वां भाग है। किसी उदासीन परमाणु में विद्युदणुओं की संख्या और प्रोटानों की संख्या समान होती है। इनकी आंतरिक संरचना ज्ञात नहीं है इसलिए इसे प्राय:मूलभूत कण माना जाता है। इनकी आंतरिक प्रचक्रण १/२ होती है, अतः यह फर्मीय होते हैं। इलेक्ट्रॉन का प्रतिकणपोजीट्रॉन कहलाता है। द्रव्यमान के अलावा पोजीट्रॉन के सारे गुण यथा आवेश इत्यादि इलेक्ट्रॉन के बिलकुल विपरीत होते हैं। जब इलेक्ट्रॉन और पोजीट्रॉन की टक्कर होती है तो दोंनो पूर्णतः नष्ट हो जाते हैं एवं दो फोटॉन उत्पन्न होती है। इलेक्ट्रॉन, लेप्टॉन परिवार के प्रथम पीढी का सदस्य है, जो कि गुरुत्वाकर्षण, विद्युत चुम्बकत्व एवं दुर्बल प्रभाव सभी में भूमिका निभाता है। इलेक्ट्रॉन कण एवं तरंग दोनो तरह के व्यवहार प्रदर्शित करता है। बीटा-क्षय के रूप में यह कण जैसा व्यवहार करता है, जबकि यंग का डबल स्लिट प्रयोग (Young's double slit experiment) में इसका किरण जैसा व्यवहार सिद्ध हुआ। चूंकि इसका सांख्यिकीय व्यवहार फर्मिऑन होता है और यह पॉली एक्सक्ल्युसन सिध्दांत का पालन करता है। आइरिस भौतिकविद जॉर्ज जॉनस्टोन स्टोनी (George Johnstone Stoney) ने १८९४ में एलेक्ट्रों नाम का सुझाव दिया था। विद्युदणु की कण के रूप में पहचान १८९७ में जे जे थॉमसन (J J Thomson) और उनकी विलायती भौतिकविद दल ने की थी। कइ भौतिकीय घटनाएं जैसे-विध्युत, चुम्बकत्व, उष्मा चालकता में विद्युदणु की अहम भूमिका होती है। जब विद्युदणु त्वरित होता है तो यह फोटान के रूप मेंऊर्जा का अवशोषण या उत्सर्जन करता है।प्रोटॉन व न्यूट्रॉन के साथ मिलकर यह्परमाणु का निर्माण करता है।परमाणु के कुल द्रव्यमान में विद्युदणु का हिस्सा कम से कम् 0.0६ प्रतिशत होता है। विद्युदणु और प्रोटॉन के बीच लगने वाले कुलाम्ब बल (coulomb force) के कारण विद्युदणु परमाणु से बंधा होता है। दो या दो से अधिक परमाणुओं के विद्युदणुओं के आपसी आदान-प्रदान या साझेदारी के कारण रासायनिक बंध बनते हैं। ब्रह्माण्ड में अधिकतर विद्युदणुओं का निर्माण बिग-बैंग के दौरान हुआ है, इनका निर्माण रेडियोधर्मी समस्थानिक (radioactive isotope) से बीटा-क्षय और अंतरिक्षीय किरणो (cosmic ray) के वायुमंडल में प्रवेश के दौरान उच्च ऊर्जा टक्कर के कारण भी होता है।.

नई!!: प्रोटॉन और इलेक्ट्रॉन · और देखें »

क्वार्क

प्रोटॉन क्वार्क एक प्राथमिक कण है तथा यह पदार्थ का मूल घटक है। क्वार्क एकजुट होकर सम्मिश्र कण हेड्रॉन बनाते है, परमाणु नाभिक के मुख्य अवयव प्रोटॉन व न्यूट्रॉन इनमें से सर्वाधिक स्थिर हैं। नैसर्गिक घटना रंग बंधन के कारण, क्वार्क ना कभी सीधे प्रेक्षित हुआ या एकांत में पाया गया; वे केवल हेड्रॉनों के भीतर पाये जा सकते है, जैसे कि बेरिऑनों (उदाहरणार्थ: प्रोटान और न्यूट्रान) और मेसॉनों के रूप में। क्वार्क के अनेक आंतरिक गुण है, जिनमे विद्युत आवेश, द्रव्यमान, रंग आवेश और स्पिन सम्मिलित है। कण भौतिकी के मानक मॉडल में क्वार्क एकमात्र प्राथमिक कण है जो सभी चार मूलभूत अंतःक्रिया या मौलिक बलों (विद्युत चुंबकत्व, गुरुत्वाकर्षण, प्रबल अंतःक्रिया और दुर्बल अंतःक्रिया) को महसूस करता है, साथ ही यह मात्र ज्ञात कण है जिसका विद्युत आवेश प्राथमिक आवेश का पूर्णांक गुणनफल नहीं है। क्वार्क के छह प्रकार है, जो जाने जाते है फ्लेवर से: अप, डाउन, स्ट्रेन्ज, चार्म, टॉप और बॉटम। अप व डाउन क्वार्क के द्रव्यमान सभी क्वार्को में सबसे कम है। अपेक्षाकृत भारी क्वार्क कणिका क्षय की प्रक्रिया के माध्यम से तीव्रता से अप व डाउन क्वार्क में बदल जाते हैं। कणिका क्षय, एक उच्च द्रव्य अवस्था का एक निम्न द्रव्य अवस्था में परिवर्तन है। इस वजह से, अप व डाउन क्वार्क आम तौर पर स्थिर होते है और ब्रह्मांड में सबसे आम हैं, वहीं स्ट्रेन्ज, चार्म, बॉटम और टॉप क्वार्क केवल उच्च ऊर्जा टक्करों में उत्पन्न किए जा सकते है। हर क्वार्क फ्लेवर के प्रतिकण होते है जिनके परिमाण तो क्वार्क के बराबर होते है परंतु चिन्ह विपरीत रखते है तथा यह एंटीक्वार्क के रूप में जाने जाते है। क्वार्क मॉडल स्वतंत्र रूप से भौतिकविदों मरे गेल-मन और जॉर्ज वाइग द्वारा 1964 में प्रस्तावित किया गया था। क्वार्क हेड्रॉनों के अंग के रूप में पेश किए गए थे। 1968 में स्टैनफोर्ड रैखिक त्वरक केंद्र पर प्रयोग होने तक उनके भौतिक अस्तित्व के बहुत कम प्रमाण थे। त्वरक प्रयोगों ने सभी छह फ्लेवरों के लिए प्रमाण प्रदान किए। टॉप क्वार्क सबसे अंत में फर्मीलैब पर 1995 में खोजा गया। .

नई!!: प्रोटॉन और क्वार्क · और देखें »

अर्धायु काल

अर्धायु काल, क्षय होते हुए किसी तत्त्व का वो काल होता है; जिसमें वो तत्त्व मूल मात्रा से आधा हो जाये। ये नाम पहले अस्थिर परमाणुओं (रेडियोधर्मी क्षय) के लिए प्रयोग किया जाता था, किन्तु अब इसे किसी भी निश्चित क्षय वाले तत्त्व के लिए प्रयोग किया जाता है। यह मूल शब्द १९०७ में अर्धायु काल के नाम से प्रयुक्त हुआ था, जिसे बाद में १९५० में घटा कर अर्धायु कर दिया गया। .

नई!!: प्रोटॉन और अर्धायु काल · और देखें »

अर्नेस्ट रदरफोर्ड

अर्नेस्ट रदरफोर्ड (३० अगस्त १८७१ - ३१ अक्टूबर १९३७) प्रसिद्ध रसायनज्ञ तथा भौतिकशास्त्री थे। उन्हें नाभिकीय भौतिकी का जनक माना जाता है। .

नई!!: प्रोटॉन और अर्नेस्ट रदरफोर्ड · और देखें »

यहां पुनर्निर्देश करता है:

प्रोटान, प्रोट्रॉन, प्रोटॉनों, प्रोटोन

निवर्तमानआने वाली
अरे! अब हम फेसबुक पर हैं! »