लोगो
यूनियनपीडिया
संचार
Google Play पर पाएं
नई! अपने एंड्रॉयड डिवाइस पर डाउनलोड यूनियनपीडिया!
मुक्त
ब्राउज़र की तुलना में तेजी से पहुँच!
 

दो-वस्तु समस्या

सूची दो-वस्तु समस्या

खगोलीय यांत्रिकी में दो-वस्तु समस्या (two-body problem) दो बिन्दु-आकार की वस्तुओं की गति व चाल को समझने को कहते हैं जो केवल एक-दूसरे को ही प्रभावित करती हैं (यानि कोई भी तीसरी वस्तु इस अध्ययन में शामिल नहीं करी जाती)। इस अध्ययन में किसी ग्रह के इर्द-गिर्द कक्षा में परिक्रमा करता उपग्रह, किसी तारे की परिक्रमा करता एक ग्रह, किसी द्वितारा मंडल में एक-दूसरे की परिक्रमा करते दो तारे, इत्यादि शामिल हैं। चिरसम्मत भौतिकी में किसी परमाणु में नाभिक की परिक्रमा करता हुआ एक इलेक्ट्रान भी इसका उदाहरण है (हालांकि प्रमात्रा यान्त्रिकी की नई समझ में यह दो-वस्तु समस्या नहीं समझी जाती)। इसी प्रकार तीन वस्तुओं की आपसी चाल को समझने के लिये तीन-वस्तु समस्या (three-body problem) नामक अध्ययन भी किया जाता है। .

18 संबंधों: चिरसम्मत भौतिकी, तारा, द्रव्यमान, द्वितारा, दीर्घवृत्त, परमाणु, परमाणु नाभिक, प्रमात्रा यान्त्रिकी, प्लूटो (बौना ग्रह), शैरन (उपग्रह), संहति-केन्द्र, खगोलीय यांत्रिकी, खगोलीय वस्तु, गति (भौतिकी), ग्रह, इलेक्ट्रॉन, कक्षा (भौतिकी), उपग्रह

चिरसम्मत भौतिकी

आधुनिक भौतिकी के चार प्रमुख क्षेत्र चिरसम्मत भौतिकी (क्लासिकल फिजिक्स) भौतिक विज्ञान की वह शाखा है जिसमें द्रव्य और ऊर्जा दो अलग अवधारणाएं हैं। प्रारम्भिक रूप से यह न्यूटन के गति के नियम व मैक्सवेल के विद्युतचुम्बकीय विकिरण सिद्धान्त पर आधारित है। चिरसम्मत भौतिकी को सामान्यतः विभिन्न क्षेत्रों में विभाजित किया जाता है। इनमें यांत्रिकी (इसमें पदार्थ की गति तथा उस पर आरोपित बलों का अध्ययन किया जाता है।), गतिकी, स्थैतिकी, प्रकाशिकी, उष्मागतिकी (ऊर्जा और उष्मा का अध्ययन) और ध्वनिकी शामिल हैं तथा इसी प्रकार विद्युत व चुम्बकत्व के परिसर में दृष्टिगोचर अध्ययन। द्रव्यमान संरक्षण का नियम, ऊर्जा संरक्षण का नियम और संवेग संरक्षण का नियम भी चिरसम्मत भौतिकी में महत्वपूर्ण हैं। इसके अनुसार द्रव्यमान और ऊर्जा को ना ही तो बनाया जा सकता है और ना ही नष्ट किया जा सकता और केवल बाह्य असन्तुलित बल आरोपित करके ही संवेग को परिवर्तित किया जा सकता है। .

नई!!: दो-वस्तु समस्या और चिरसम्मत भौतिकी · और देखें »

तारा

तारे (Stars) स्वयंप्रकाशित (self-luminous) उष्ण गैस की द्रव्यमात्रा से भरपूर विशाल, खगोलीय पिंड हैं। इनका निजी गुरुत्वाकर्षण (gravitation) इनके द्रव्य को संघटित रखता है। मेघरहित आकाश में रात्रि के समय प्रकाश के बिंदुओं की तरह बिखरे हुए, टिमटिमाते प्रकाशवाले बहुत से तारे दिखलाई देते हैं। .

नई!!: दो-वस्तु समस्या और तारा · और देखें »

द्रव्यमान

द्रव्यमान किसी पदार्थ का वह मूल गुण है, जो उस पदार्थ के त्वरण का विरोध करता है। सरल भाषा में द्रव्यमान से हमें किसी वस्तु का वज़न और गुरुत्वाकर्षण के प्रति उसके आकर्षण या शक्ति का पता चलता है। श्रेणी:भौतिकी श्रेणी:भौतिक शब्दावली *.

नई!!: दो-वस्तु समस्या और द्रव्यमान · और देखें »

द्वितारा

हबल दूरबीन से ली गयी व्याध तारे की तस्वीर जिसमें अमुख्य "व्याध बी" तारे का बिंदु (बाएँ, निचली तरफ़) मुख्य व्याघ तारे से अलग दिख रहा है द्वितारा या द्विसंगी तारा दो तारों का एक मंडल होता है जिसमें दोनों तारे अपने सांझे द्रव्यमान केंद्र (सॅन्टर ऑफ़ मास) की परिक्रमा करते हैं। द्वितारों में ज़्यादा रोशन तारे को मुख्य तारा बोलते हैं और कम रोशन तारे को अमुख्य तारा या "साथी तारा" बोलते हैं। कभी-कभी द्वितारा और दोहरा तारा का एक ही अर्थ निकला जाता है, लेकिन इन दोनों में भिन्नताएँ हैं। दोहरे तारे ऐसे दो तारे होते हैं जो पृथ्वी से इकठ्ठे नज़र आते हों। ऐसा या तो इसलिए हो सकता है क्योंकि वे वास्तव में द्वितारा मंडल में साथ-साथ हैं या इसलिए क्योंकि पृथ्वी पर बैठे हुए वे एक दुसरे के समीप लग रहे हैं लेकिन वास्तव में उनका एक दुसरे से कोई सम्बन्ध नहीं है। किसी दोहरे तारे में इनमें से कौनसी स्थिति है वह लंबन (पैरलैक्स) को मापने से जाँची जा सकती है। .

नई!!: दो-वस्तु समस्या और द्वितारा · और देखें »

दीर्घवृत्त

कार्तीय निर्देशांक पद्धति में '''दीर्घवृत्त''' गणित में दीर्घवृत्त एक ऐसा शांकव होता है जिसकी उत्केन्द्रता इकाई से कम होती है। एक अन्य परिभाषा के अनुसार, दीर्घवृत्त ऐसे बिन्दुओं का बिन्दुपथ है जिनकी दो निश्चित बिन्दुओं से दूरी का योग सदैव अचर रहता है। इन निश्चित बिन्दुओं को दीर्घवृत्त की नाभियाँ (Focus) कहते हैं। माना जाता है कि पृथ्वी सहित कई ग्रह सूर्य के चारों ओर एक दीर्घवृत्तीय कक्षा में घूमते हैं और इस दीर्घवृत्त की एक नाभि पर सूर्य अवस्थित होता है। दीर्घवृत्त इस प्रकार, यह एक वृत्त का सामान्यीकृत रूप होता है। वृत्त एक विशेष प्रकार का दीर्घवृत्त होता है जिसमें दोनों नाभियाँ एक ही स्थान पर होती हैं। एक दीर्घवृत्त का आकार इसकी उत्केन्द्रता से दर्शाया जाता है, जिसका मान दीर्घवृत्त के लिए 0 से लेकर 1 के मध्य होता है। यदि किसी दीर्घवृत्त की उत्केन्द्रता 0 हो तो वह दीर्घवृत्त, एक वृत्त होता है। .

नई!!: दो-वस्तु समस्या और दीर्घवृत्त · और देखें »

परमाणु

एक परमाणु किसी भी साधारण से पदार्थ की सबसे छोटी घटक इकाई है जिसमे एक रासायनिक तत्व के गुण होते हैं। हर ठोस, तरल, गैस, और प्लाज्मा तटस्थ या आयनन परमाणुओं से बना है। परमाणुओं बहुत छोटे हैं; विशिष्ट आकार लगभग 100 pm (एक मीटर का एक दस अरबवें) हैं। हालांकि, परमाणुओं में अच्छी तरह परिभाषित सीमा नहीं होते है, और उनके आकार को परिभाषित करने के लिए अलग अलग तरीके होते हैं जोकि अलग लेकिन काफी करीब मूल्य देते हैं। परमाणुओं इतने छोटे है कि शास्त्रीय भौतिकी इसका काफ़ी गलत परिणाम देते हैं। हर परमाणु नाभिक से बना है और नाभिक एक या एक से अधिक इलेक्ट्रॉन्स से सीमित है। नाभिक आम तौर पर एक या एक से अधिक न्यूट्रॉन और प्रोटॉन की एक समान संख्या से बना है। प्रोटान और न्यूट्रान न्यूक्लिऑन कहलाता है। परमाणु के द्रव्यमान का 99.94% से अधिक भाग नाभिक में होता है। प्रोटॉन पर सकारात्मक विद्युत आवेश होता है, इलेक्ट्रॉन्स पर नकारात्मक विद्युत आवेश होता है और न्यूट्रान पर कोई भी विद्युत आवेश नहीं होता है। एक परमाणु के इलेक्ट्रॉन्स इस विद्युत चुम्बकीय बल द्वारा एक परमाणु के नाभिक में प्रोटॉन की ओर आकर्षित होता है। नाभिक में प्रोटॉन और न्यूट्रॉन एक अलग बल, यानि परमाणु बल के द्वारा एक दूसरे को आकर्षित करते है, जोकि विद्युत चुम्बकीय बल जिसमे सकारात्मक आवेशित प्रोटॉन एक दूसरे से पीछे हट रहे हैं, की तुलना में आम तौर पर शक्तिशाली है। परमाणु के केन्द्र में नाभिक (न्यूक्लिअस) होता है जिसका घनत्व बहुत अधिक होता है। नाभिक के चारो ओर ऋणात्मक आवेश वाले एलेक्ट्रान चक्कर लगाते रहते हैं जिसको एलेक्ट्रान घन (एलेक्ट्रान क्लाउड) कहते हैं। नाभिक, धनात्मक आवेश वाले प्रोटानों एवं अनावेशित (न्यूट्रल) न्यूट्रानों से बना होता है। जब किसी परमाणु में एलेक्ट्रानों की संख्या उसके नाभिक में स्थित प्रोटानों की संख्या के समान होती है तब परमाणु वैद्युकीय दृष्टि से अनावेशित होता है; अन्यथा परमाणु धनावेशित या ऋणावेशित ऑयन के रूप में होता है। आधुनिक रसायनशास्त्र में शताधिक मूल भूत माने गए हैं, जिनमें से कुछ तो धातुएँ हैं जैसे ताँबा, सोना, लोहा, सीसा, चाँदी, राँगा, जस्ता; कुछ और खनिज हैं, जैसे, गंधक, फासफरस, पोटासियम, अंजन, पारा, हड़ताल, तथा कुछ गैस हैं, जैसे, आक्सीजन, नाइट्रोजन, हाइड्रोजन आदि। इन्हीं मूल भूतों के अनुसार परमाणु आधुनिक रसायन में माने जाते हैं। पहले समझा जाता था कि ये अविभाज्य हैं। अब इनके भी टुकड़े कर दिए गए हैं। नाभिक में प्रोटॉन की संख्या किसी रासायनिक तत्व को परिभाषित करता है: जैसे सभी तांबा के परमाणु में 29 प्रोटॉन होते हैं। न्यूट्रॉन की संख्या तत्व के समस्थानिक को परिभाषित करता है। इलेक्ट्रॉनों की संख्या एक परमाणु के चुंबकीय गुण को प्रभावित करता है। परमाणु अणु के रूप में रासायनिक यौगिक बनाने के लिए रासायनिक आबंध द्वारा एक या अधिक अन्य परमाणुओं को संलग्न कर सकते हैं। परमाणु की संघटित और असंघटित करने की क्षमता प्रकृति में हुए बहुत से भौतिक परिवर्तन के लिए जिम्मेदार है, और रसायन शास्त्र के अनुशासन का विषय है। .

नई!!: दो-वस्तु समस्या और परमाणु · और देखें »

परमाणु नाभिक

नाभिक, परमाणु के मध्य स्थित धनात्मक वैद्युत आवेश युक्त अत्यन्त ठोस क्षेत्र होता है। नाभिक, नाभिकीय कणों प्रोटॉन तथा न्यूट्रॉन से बने होते है। इस कण को नूक्लियान्स कहते है। प्रोटॉन व न्यूट्रॉन दोनो का द्रव्यमान लगभग बराबर होता है और दोनों का आंतरिक कोणीय संवेग (स्पिन) १/२ होता है। प्रोटॉन इकाई विद्युत आवेशयुक्त होता है जबकि न्यूट्रॉन अनावेशित होता है। प्रोटॉन और न्यूट्रॉन दोनो न्यूक्लिऑन कहलाते है। नाभिक का व्यास (10−15 मीटर)(हाइड्रोजन-नाभिक) से (10−14 मीटर)(युरेनियम) के दायरे में होता है। परमाणु का लगभग सारा द्रव्यमान नाभिक के कारण ही होता है, इलेक्ट्रान का योगदान लगभग नगण्य होता है। सामान्यतः नाभिक की पहचान परमाणु संख्या Z (प्रोटॉन की संख्या), न्यूट्रॉन संख्या N और द्रव्यमान संख्या A(प्रोटॉन की संख्या + न्यूट्रॉन संख्या) से होती है जहाँ A .

नई!!: दो-वस्तु समस्या और परमाणु नाभिक · और देखें »

प्रमात्रा यान्त्रिकी

प्रमात्रा यान्त्रिकी (Quantum mechanics) कुछ वैज्ञानिक सिद्धान्तों का एक समुच्चय है जो परमाणवीय पैमाने पर उर्जा एवं पदार्थ के ज्ञात गुणधर्मों की व्याख्या करते हैं। इसमें उप-परमाणु पैमाने पर जो प्रकाश और उप-परमाण्वीय कणों में तरंग-कण द्विरूप देखा जाता है, उसका गणित आधार सम्मिलित है। क्वाण्टम यान्त्रिकी में उर्जा और पदार्थ के गहरे सम्बन्ध का भी गणित आधार सम्मिलित है। .

नई!!: दो-वस्तु समस्या और प्रमात्रा यान्त्रिकी · और देखें »

प्लूटो (बौना ग्रह)

यम या प्लूटो सौर मण्डल का दुसरा सबसे बड़ा बौना ग्रह है (सबसे बड़ा ऍरिस है)। प्लूटो को कभी सौर मण्डल का सबसे बाहरी ग्रह माना जाता था, लेकिन अब इसे सौर मण्डल के बाहरी काइपर घेरे की सब से बड़ी खगोलीय वस्तु माना जाता है। काइपर घेरे की अन्य वस्तुओं की तरह प्लूटो का अकार और द्रव्यमान काफ़ी छोटा है - इसका आकार पृथ्वी के चन्द्रमा से सिर्फ़ एक-तिहाई है। सूरज के इर्द-गिर्द इसकी परिक्रमा की कक्षा भी थोड़ी बेढंगी है - यह कभी तो वरुण (नॅप्टयून) की कक्षा के अन्दर जाकर सूरज से ३० खगोलीय इकाई (यानि ४.४ अरब किमी) दूर होता है और कभी दूर जाकर सूर्य से ४५ ख॰ई॰ (यानि ७.४ अरब किमी) पर पहुँच जाता है। प्लूटो काइपर घेरे की अन्य वस्तुओं की तरह अधिकतर जमी हुई नाइट्रोजन की बर्फ़, पानी की बर्फ़ और पत्थर का बना हुआ है। प्लूटो को सूरज की एक पूरी परिक्रमा करते हुए २४८.०९ वर्ष लग जाते हैं। .

नई!!: दो-वस्तु समस्या और प्लूटो (बौना ग्रह) · और देखें »

शैरन (उपग्रह)

यम (प्लूटो) और शैरन दोनों अपने सांझे द्रव्यमान केन्द्र की परिक्रमा करते हैं शैरन, जिसे कैरन भी कहतें हैं, बौने ग्रह यम (प्लूटो) का सब से बड़ा उपग्रह है। इसकी खोज १९७८ में हुई थी। २०१५ में प्लूटो और शैरन का अध्ययन करने के लिए अमेरिकी सरकार द्वारा एक "न्यू होराएज़न्ज़" (हिंदी अर्थ: "नए क्षितिज") नाम का मनुष्य-रहित अंतरिक्ष यान भेजने की योजना है। शैरन गोलाकार है और उसका व्यास १,२०७ किमी है, जो प्लूटो के व्यास के आधे से थोड़ा अधिक है। उसकी सतह का कुल क्षेत्रफल लगभग ४५.८ लाख वर्ग किलोमीटर है। जहाँ प्लूटो की सतह पर नाइट्रोजन और मीथेन की जमी गुई बर्फ़ है वहाँ शैरन पर उसकी बजाए पानी की बर्फ़ है। प्लूटो पर एक पतला वायुमंडल है लेकिन शैरन के अध्ययन से संकेत मिला है के उसपर कोई वायुमंडल नहीं है और उसकी सतह के ऊपर सिर्फ़ खुले अंतरिक्ष का व्योम है। शैरन पर प्लूटो की तुलना में पत्थर कम हैं और बर्फ़ अधिक है। .

नई!!: दो-वस्तु समस्या और शैरन (उपग्रह) · और देखें »

संहति-केन्द्र

अलग-अलग द्रव्यमान वाली चार गेंदों के निकाय का '''संहति-केन्द्र भौतिकी में, संहतियों के किसी वितरण का संहति-केंद्र (center of mass) वह बिन्दु है जिस पर वह सारी संहतियाँ केन्द्रीभूत मानी जा सकती हैं। संहति केन्द्र के कुछ विशेष गुण हैं, उदाहरण के लिये यदि किसी वस्तु पर कोई बल लगाया जाय जिसकी क्रियारेखा उस वस्तु के संहति-केन्द्र से होकर जाती हो तो उस वस्तु में केवल स्थानातरण गति होगी (घूर्णी गति नहीं)। संहति-केन्द्र के सापेक्ष उस वस्तु में निहित सभी संहतियों के आघूर्णों (मोमेण्ट) का योग शून्य होता है। दूसरे शब्दों में, संहति-केन्द्र के सापेक्ष, सभी संहतियों की स्थिति का भारित औसत (वेटेड एवरेज) शून्य होता है। कणों के किसी निकाय का संहति केन्द्र वह बिन्दु है जहाँ, अधिकांश उद्देश्यों के लिए, निकाय ऐसे गति करता है जैसे निकाय का सब द्रव्यमान उस बिन्दु पर संकेंद्रित हो। संहति केन्द्र, केवल निकाय के कणों के स्थिति-सदिश और द्रव्यमान पर निर्भर होता है। संहति केन्द्र पर वास्तविक पदार्थ होना अनिवार्य नहीं है (जैसे, एक खोखले गोले का संहति-केन्द्र उस गोले के केन्द्र पर होता है जहाँ कोई द्रव्यमान ही नहीं है)। गुरुत्वाकर्षण क्षेत्र के एकसमान होने की स्थिति में कभी-कभी इसे गलती से गुरुत्वाकर्षण केन्द्र भी कहा जाता है। किसी वस्तु का रेखागणितीय केन्द्र, द्रव्यमान केन्द्र तथा गुरुत्व केन्द्र अलग-अलग हो सकते हैं। संवेग-केन्द्रीय निर्देश तंत्र वह निर्देश तंत्र है जिसमें निकाय का द्रव्यमान केन्द्र स्थिर है। यह एक जड़त्वीय फ्रेम है। एक द्रव्यमान-केन्द्रीय निर्देश तंत्र वह तंत्र है जहाँ द्रव्यमान केन्द्र न केवल स्थिर है बल्कि निर्देशांक निकाय के मूल बिन्दु पर स्थित है। .

नई!!: दो-वस्तु समस्या और संहति-केन्द्र · और देखें »

खगोलीय यांत्रिकी

खगोलीय यांत्रिकी (Celestial mechanics) में आकाशीय पिंडों (heavenly bodies) की गतियों के गणितीय सिद्धांतों का विवेचन किया जाता है। न्यूटन द्वारा प्रिंसिपिया में उपस्थापित गुरुत्वाकर्षण नियम तथा तीन गतिनियम खगोलीय यांत्रिकी के मूल आधार हैं। इस प्रकार इसमें विचारणीय समस्या द्वितीय वर्ण के सामान्य अवकल समीकरणों के एक वर्ग के हल करने तक सीमित हो जाती है। .

नई!!: दो-वस्तु समस्या और खगोलीय यांत्रिकी · और देखें »

खगोलीय वस्तु

आकाशगंगा सब से बड़ी खगोलीय वस्तुएँ होती हैं - एन॰जी॰सी॰ ४४१४ हमारे सौर मण्डल से ६ करोड़ प्रकाश-वर्ष दूर एक ५५,००० प्रकाश-वर्ष के व्यास की आकाशगंगा है खगोलीय वस्तु ऐसी वस्तु को कहा जाता है जो ब्रह्माण्ड में प्राकृतिक रूप से पायी जाती है, यानि जिसकी रचना मनुष्यों ने नहीं की होती है। इसमें तारे, ग्रह, प्राकृतिक उपग्रह, गैलेक्सी आदि शामिल हैं। .

नई!!: दो-वस्तु समस्या और खगोलीय वस्तु · और देखें »

गति (भौतिकी)

किसी ग्रह के चारो ओर उसके किसी उपग्रह की गति; इसमें ग्रह के ताक्षणिक वेग और त्वरण की दिशा पर ध्यान दीजिये। स्प्रिंग द्वारा लटका द्रव्यमान सरल आवर्त गति कर रहा है अंगूठाकार यदि कोई वस्तु अन्य वस्तुओं की तुलना में समय के सापेक्ष में स्थान परिवर्तन करती है, तो वस्तु की इस अवस्था को गति (motion/मोशन) कहा जाता है। सामान्य शब्दों में गति का अर्थ - वस्तु की स्थिति में परिवर्तन गति कहलाती है। गति (Motion).

नई!!: दो-वस्तु समस्या और गति (भौतिकी) · और देखें »

ग्रह

हमारे सौरमण्डल के ग्रह - दायें से बाएं - बुध, शुक्र, पृथ्वी, मंगल, बृहस्पति, शनि, युरेनस और नेप्चून सौर मंडल के ग्रहों, सूर्य और अन्य पिंडों के तुलनात्मक चित्र सूर्य या किसी अन्य तारे के चारों ओर परिक्रमा करने वाले खगोल पिण्डों को ग्रह कहते हैं। अंतर्राष्ट्रीय खगोलीय संघ के अनुसार हमारे सौर मंडल में आठ ग्रह हैं - बुध, शुक्र, पृथ्वी, मंगल, बृहस्पति, शनि, युरेनस और नेप्चून। इनके अतिरिक्त तीन बौने ग्रह और हैं - सीरीस, प्लूटो और एरीस। प्राचीन खगोलशास्त्रियों ने तारों और ग्रहों के बीच में अन्तर इस तरह किया- रात में आकाश में चमकने वाले अधिकतर पिण्ड हमेशा पूरब की दिशा से उठते हैं, एक निश्चित गति प्राप्त करते हैं और पश्चिम की दिशा में अस्त होते हैं। इन पिण्डों का आपस में एक दूसरे के सापेक्ष भी कोई परिवर्तन नहीं होता है। इन पिण्डों को तारा कहा गया। पर कुछ ऐसे भी पिण्ड हैं जो बाकी पिण्डों के सापेक्ष में कभी आगे जाते थे और कभी पीछे - यानी कि वे घुमक्कड़ थे। Planet एक लैटिन का शब्द है, जिसका अर्थ होता है इधर-उधर घूमने वाला। इसलिये इन पिण्डों का नाम Planet और हिन्दी में ग्रह रख दिया गया। शनि के परे के ग्रह दूरबीन के बिना नहीं दिखाई देते हैं, इसलिए प्राचीन वैज्ञानिकों को केवल पाँच ग्रहों का ज्ञान था, पृथ्वी को उस समय ग्रह नहीं माना जाता था। ज्योतिष के अनुसार ग्रह की परिभाषा अलग है। भारतीय ज्योतिष और पौराणिक कथाओं में नौ ग्रह गिने जाते हैं, सूर्य, चन्द्रमा, बुध, शुक्र, मंगल, गुरु, शनि, राहु और केतु। .

नई!!: दो-वस्तु समस्या और ग्रह · और देखें »

इलेक्ट्रॉन

इलेक्ट्रॉन या विद्युदणु (प्राचीन यूनानी भाषा: ἤλεκτρον, लैटिन, अंग्रेज़ी, फ्रेंच, स्पेनिश: Electron, जर्मन: Elektron) ऋणात्मक वैद्युत आवेश युक्त मूलभूत उपपरमाणविक कण है। यह परमाणु में नाभिक के चारो ओर चक्कर लगाता हैं। इसका द्रव्यमान सबसे छोटे परमाणु (हाइड्रोजन) से भी हजारगुना कम होता है। परम्परागत रूप से इसके आवेश को ऋणात्मक माना जाता है और इसका मान -१ परमाणु इकाई (e) निर्धारित किया गया है। इस पर 1.6E-19 कूलाम्ब परिमाण का ऋण आवेश होता है। इसका द्रव्यमान 9.11E−31 किग्रा होता है जो प्रोटॉन के द्रव्यमान का लगभग १८३७ वां भाग है। किसी उदासीन परमाणु में विद्युदणुओं की संख्या और प्रोटानों की संख्या समान होती है। इनकी आंतरिक संरचना ज्ञात नहीं है इसलिए इसे प्राय:मूलभूत कण माना जाता है। इनकी आंतरिक प्रचक्रण १/२ होती है, अतः यह फर्मीय होते हैं। इलेक्ट्रॉन का प्रतिकणपोजीट्रॉन कहलाता है। द्रव्यमान के अलावा पोजीट्रॉन के सारे गुण यथा आवेश इत्यादि इलेक्ट्रॉन के बिलकुल विपरीत होते हैं। जब इलेक्ट्रॉन और पोजीट्रॉन की टक्कर होती है तो दोंनो पूर्णतः नष्ट हो जाते हैं एवं दो फोटॉन उत्पन्न होती है। इलेक्ट्रॉन, लेप्टॉन परिवार के प्रथम पीढी का सदस्य है, जो कि गुरुत्वाकर्षण, विद्युत चुम्बकत्व एवं दुर्बल प्रभाव सभी में भूमिका निभाता है। इलेक्ट्रॉन कण एवं तरंग दोनो तरह के व्यवहार प्रदर्शित करता है। बीटा-क्षय के रूप में यह कण जैसा व्यवहार करता है, जबकि यंग का डबल स्लिट प्रयोग (Young's double slit experiment) में इसका किरण जैसा व्यवहार सिद्ध हुआ। चूंकि इसका सांख्यिकीय व्यवहार फर्मिऑन होता है और यह पॉली एक्सक्ल्युसन सिध्दांत का पालन करता है। आइरिस भौतिकविद जॉर्ज जॉनस्टोन स्टोनी (George Johnstone Stoney) ने १८९४ में एलेक्ट्रों नाम का सुझाव दिया था। विद्युदणु की कण के रूप में पहचान १८९७ में जे जे थॉमसन (J J Thomson) और उनकी विलायती भौतिकविद दल ने की थी। कइ भौतिकीय घटनाएं जैसे-विध्युत, चुम्बकत्व, उष्मा चालकता में विद्युदणु की अहम भूमिका होती है। जब विद्युदणु त्वरित होता है तो यह फोटान के रूप मेंऊर्जा का अवशोषण या उत्सर्जन करता है।प्रोटॉन व न्यूट्रॉन के साथ मिलकर यह्परमाणु का निर्माण करता है।परमाणु के कुल द्रव्यमान में विद्युदणु का हिस्सा कम से कम् 0.0६ प्रतिशत होता है। विद्युदणु और प्रोटॉन के बीच लगने वाले कुलाम्ब बल (coulomb force) के कारण विद्युदणु परमाणु से बंधा होता है। दो या दो से अधिक परमाणुओं के विद्युदणुओं के आपसी आदान-प्रदान या साझेदारी के कारण रासायनिक बंध बनते हैं। ब्रह्माण्ड में अधिकतर विद्युदणुओं का निर्माण बिग-बैंग के दौरान हुआ है, इनका निर्माण रेडियोधर्मी समस्थानिक (radioactive isotope) से बीटा-क्षय और अंतरिक्षीय किरणो (cosmic ray) के वायुमंडल में प्रवेश के दौरान उच्च ऊर्जा टक्कर के कारण भी होता है।.

नई!!: दो-वस्तु समस्या और इलेक्ट्रॉन · और देखें »

कक्षा (भौतिकी)

दिक् में एक बिंदु के इर्द-गिर्द अपनी अलग-अलग कक्षाओं में परिक्रमा करती दो अलग आकारों की वस्तुएँ भौतिकी में कक्षा या ऑर्बिट दिक् (स्पेस) में स्थित एक बिंदु के इर्द-गिर्द एक मार्ग को कहते हैं जिसपर चलकर कोई वस्तु उस बिंदु की परिक्रमा करती है। खगोलशास्त्र में अक्सर उस बिंदु पर कोई बड़ा तारा या ग्रह स्थित होता है जिसके इर्द-गिर्द कोई छोटा ग्रह या उपग्रह अपनी कक्षा में उसकी परिक्रमा करता है। यदि खगोलीय वस्तुओं की कक्षाओं को देखा जाए तो कई भिन्न तरह की कक्षाएँ देखी जाती हैं - कुछ गोलाकार हैं, कुछ अण्डाकार हैं और कुछ इन से अधिक पेचीदा हैं। श्रेणी:भौतिकी श्रेणी:खगोलशास्त्र श्रेणी:हिन्दी विकि डीवीडी परियोजना * श्रेणी:ज्योतिष पक्ष.

नई!!: दो-वस्तु समस्या और कक्षा (भौतिकी) · और देखें »

उपग्रह

ERS 2) अन्तरिक्ष उड़ान (spaceflight) के संदर्भ में, उपग्रह एक वस्तु है जिसे मानव (USA 193) .

नई!!: दो-वस्तु समस्या और उपग्रह · और देखें »

निवर्तमानआने वाली
अरे! अब हम फेसबुक पर हैं! »