लोगो
यूनियनपीडिया
संचार
Google Play पर पाएं
नई! अपने एंड्रॉयड डिवाइस पर डाउनलोड यूनियनपीडिया!
डाउनलोड
ब्राउज़र की तुलना में तेजी से पहुँच!
 

तरंग-कण द्वैतता

सूची तरंग-कण द्वैतता

तरंग-कण द्वैतता अथवा तरंग-कण द्विरूप सिद्धान्त के अनुसार सभी पदार्थों में कण और तरंग (लहर) दोनों के ही लक्षण होते हैं। आधुनिक भौतिकी के क्वाण्टम यान्त्रिकी क्षेत्र का यह एक आधारभूत सिद्धान्त है। जिस स्तर पर मनुष्यों की इन्द्रियाँ दुनिया को भाँपती हैं, उस स्तर पर कोई भी वस्तु या तो कण होती है या तरंग होती है, लेकिन एक साथ दोनों नहीं होते। परमाणुओं के बहुत ही सूक्ष्म स्तर पर ऐसा नहीं होता और यहाँ भौतिकी समझने के लिए पाया गया कि वस्तुएँ और प्रकाश कभी तो कण की प्रकृति दिखाती हैं और कभी तरंग की। इस समय स्थिति बड़ी विलक्षण है। कुछ घटनाओं से तो प्रकाश तरंगमय प्रतीत होता है और कुछ से कणिकामय। संभवत: सत्य द्वैतमय है। रूपए के दोनों पृष्ठों की तरह, प्रकाश के भी दो विभिन्न रूप हैं। किंतु हैं दोनों ही सत्य। ऐसा ही द्वैत द्रव्य के संबंध में भी पाया गया है। वह भी कभी तरंगमय दिखाई देता है और कभी कणिकामय। न तो प्रकाश के ओर न द्रव्य के दोनों रूप एक ही समय में एक ही साथ दिखाई दे सकते हैं। वे परस्पर विरोधी, किंतु पूरक रूप हैं। .

36 संबंधों: डेमी क्रिट्स, दार्शनिक, निकोला टेस्ला, नोबेल पुरस्कार, परमाणु, परमाणु भार, प्रमात्रा यान्त्रिकी, प्रकाश, प्रकाश के सिद्धान्त, प्रकाश-विद्युत प्रभाव, फ़ोटोन, फिलिप लेनार्ड, ब्रह्माण्ड, भौतिक शास्त्र, मानक विचलन, मैक्स प्लांक, यूनानी, लुई द ब्रॉई, समीकरण, संवेग (भौतिकी), स्कॉट्लैण्ड, हाइनरिख़ हर्ट्ज़, जेम्स क्लर्क मैक्सवेल, वर्नर हाइजनबर्ग, विद्युतचुंबकीय विकिरण, विवर्तन, गणितीय नियतांक, आवृत्ति, आइज़क न्यूटन, इलेक्ट्रॉन, कृष्णिका, अनिश्चितता सिद्धान्त, अरस्तु, अल्बर्ट आइंस्टीन, अवधारणा, उष्मागतिकी

डेमी क्रिट्स

डेमी क्रिट्स यूनान के दार्शनिक थे। ये आण्विक तथ्य के जन्मदाता थे। इन्होंने पदार्थ के गठन के सम्बन्ध में खोज किया। .

नई!!: तरंग-कण द्वैतता और डेमी क्रिट्स · और देखें »

दार्शनिक

जो दर्शन पर मनन करे वह दार्शनिक हुआ। .

नई!!: तरंग-कण द्वैतता और दार्शनिक · और देखें »

निकोला टेस्ला

निकोला टेस्ला (अंग्रेजी: Nikola Tesla; सर्बियाई सिरिलिक: Никола Тесла, 10 जुलाई 1856 - 7 जनवरी 1943) एक सर्बियाई अमेरिकी आविष्कारक, भौतिक विज्ञानी, यांत्रिक अभियन्ता, विद्युत अभियन्ता और भविष्यवादी थे। टेस्ला की प्रसिद्धि उनके आधुनिक प्रत्यावर्ती धारा (एसी) विद्युत आपूर्ति प्रणाली के क्षेत्र में दिये गये अभूतपूर्व योगदान के कारण है। टेस्ला के विभिन्न पेटेंट और सैद्धांतिक कार्य, बेतार संचार और रेडियो के विकास का आधार साबित हुये हैं। वैद्युत चुंबकत्व के क्षेत्र में किये गये उनके कई क्रांतिकारी विकास कार्य, माइकल फैराडे के विद्युत प्रौद्योगिकी के सिद्धांतों पर आधारित थे। .

नई!!: तरंग-कण द्वैतता और निकोला टेस्ला · और देखें »

नोबेल पुरस्कार

नोबेल फाउंडेशन द्वारा स्वीडन के वैज्ञानिक अल्फ्रेड नोबेल की याद में वर्ष १९०१ में शुरू किया गया यह शांति, साहित्य, भौतिकी, रसायन, चिकित्सा विज्ञान और अर्थशास्त्र के क्षेत्र में विश्व का सर्वोच्च पुरस्कार है। इस पुरस्कार के रूप में प्रशस्ति-पत्र के साथ 14 लाख डालर की राशि प्रदान की जाती है। अल्फ्रेड नोबेल ने कुल ३५५ आविष्कार किए जिनमें १८६७ में किया गया डायनामाइट का आविष्कार भी था। नोबेल को डायनामाइट तथा इस तरह के विज्ञान के अनेक आविष्कारों की विध्वंसक शक्ति की बखूबी समझ थी। साथ ही विकास के लिए निरंतर नए अनुसंधान की जरूरत का भी भरपूर अहसास था। दिसंबर १८९६ में मृत्यु के पूर्व अपनी विपुल संपत्ति का एक बड़ा हिस्सा उन्होंने एक ट्रस्ट के लिए सुरक्षित रख दिया। उनकी इच्छा थी कि इस पैसे के ब्याज से हर साल उन लोगों को सम्मानित किया जाए जिनका काम मानव जाति के लिए सबसे कल्याणकारी पाया जाए। स्वीडिश बैंक में जमा इसी राशि के ब्याज से नोबेल फाउँडेशन द्वारा हर वर्ष शांति, साहित्य, भौतिकी, रसायन, चिकित्सा विज्ञान और अर्थशास्त्र में सर्वोत्कृष्ट योगदान के लिए दिया जाता है। नोबेल फ़ाउंडेशन की स्थापना २९ जून १९०० को हुई तथा 1901 से नोबेल पुरस्कार दिया जाने लगा। अर्थशास्त्र के क्षेत्र में नोबेल पुरस्कार की शुरुआत 1968 से की गई। पहला नोबेल शांति पुरस्कार १९०१ में रेड क्रॉस के संस्थापक ज्यां हैरी दुनांत और फ़्रेंच पीस सोसाइटी के संस्थापक अध्यक्ष फ्रेडरिक पैसी को संयुक्त रूप से दिया गया। अल्फ्रेड नोबेल .

नई!!: तरंग-कण द्वैतता और नोबेल पुरस्कार · और देखें »

परमाणु

एक परमाणु किसी भी साधारण से पदार्थ की सबसे छोटी घटक इकाई है जिसमे एक रासायनिक तत्व के गुण होते हैं। हर ठोस, तरल, गैस, और प्लाज्मा तटस्थ या आयनन परमाणुओं से बना है। परमाणुओं बहुत छोटे हैं; विशिष्ट आकार लगभग 100 pm (एक मीटर का एक दस अरबवें) हैं। हालांकि, परमाणुओं में अच्छी तरह परिभाषित सीमा नहीं होते है, और उनके आकार को परिभाषित करने के लिए अलग अलग तरीके होते हैं जोकि अलग लेकिन काफी करीब मूल्य देते हैं। परमाणुओं इतने छोटे है कि शास्त्रीय भौतिकी इसका काफ़ी गलत परिणाम देते हैं। हर परमाणु नाभिक से बना है और नाभिक एक या एक से अधिक इलेक्ट्रॉन्स से सीमित है। नाभिक आम तौर पर एक या एक से अधिक न्यूट्रॉन और प्रोटॉन की एक समान संख्या से बना है। प्रोटान और न्यूट्रान न्यूक्लिऑन कहलाता है। परमाणु के द्रव्यमान का 99.94% से अधिक भाग नाभिक में होता है। प्रोटॉन पर सकारात्मक विद्युत आवेश होता है, इलेक्ट्रॉन्स पर नकारात्मक विद्युत आवेश होता है और न्यूट्रान पर कोई भी विद्युत आवेश नहीं होता है। एक परमाणु के इलेक्ट्रॉन्स इस विद्युत चुम्बकीय बल द्वारा एक परमाणु के नाभिक में प्रोटॉन की ओर आकर्षित होता है। नाभिक में प्रोटॉन और न्यूट्रॉन एक अलग बल, यानि परमाणु बल के द्वारा एक दूसरे को आकर्षित करते है, जोकि विद्युत चुम्बकीय बल जिसमे सकारात्मक आवेशित प्रोटॉन एक दूसरे से पीछे हट रहे हैं, की तुलना में आम तौर पर शक्तिशाली है। परमाणु के केन्द्र में नाभिक (न्यूक्लिअस) होता है जिसका घनत्व बहुत अधिक होता है। नाभिक के चारो ओर ऋणात्मक आवेश वाले एलेक्ट्रान चक्कर लगाते रहते हैं जिसको एलेक्ट्रान घन (एलेक्ट्रान क्लाउड) कहते हैं। नाभिक, धनात्मक आवेश वाले प्रोटानों एवं अनावेशित (न्यूट्रल) न्यूट्रानों से बना होता है। जब किसी परमाणु में एलेक्ट्रानों की संख्या उसके नाभिक में स्थित प्रोटानों की संख्या के समान होती है तब परमाणु वैद्युकीय दृष्टि से अनावेशित होता है; अन्यथा परमाणु धनावेशित या ऋणावेशित ऑयन के रूप में होता है। आधुनिक रसायनशास्त्र में शताधिक मूल भूत माने गए हैं, जिनमें से कुछ तो धातुएँ हैं जैसे ताँबा, सोना, लोहा, सीसा, चाँदी, राँगा, जस्ता; कुछ और खनिज हैं, जैसे, गंधक, फासफरस, पोटासियम, अंजन, पारा, हड़ताल, तथा कुछ गैस हैं, जैसे, आक्सीजन, नाइट्रोजन, हाइड्रोजन आदि। इन्हीं मूल भूतों के अनुसार परमाणु आधुनिक रसायन में माने जाते हैं। पहले समझा जाता था कि ये अविभाज्य हैं। अब इनके भी टुकड़े कर दिए गए हैं। नाभिक में प्रोटॉन की संख्या किसी रासायनिक तत्व को परिभाषित करता है: जैसे सभी तांबा के परमाणु में 29 प्रोटॉन होते हैं। न्यूट्रॉन की संख्या तत्व के समस्थानिक को परिभाषित करता है। इलेक्ट्रॉनों की संख्या एक परमाणु के चुंबकीय गुण को प्रभावित करता है। परमाणु अणु के रूप में रासायनिक यौगिक बनाने के लिए रासायनिक आबंध द्वारा एक या अधिक अन्य परमाणुओं को संलग्न कर सकते हैं। परमाणु की संघटित और असंघटित करने की क्षमता प्रकृति में हुए बहुत से भौतिक परिवर्तन के लिए जिम्मेदार है, और रसायन शास्त्र के अनुशासन का विषय है। .

नई!!: तरंग-कण द्वैतता और परमाणु · और देखें »

परमाणु भार

किसी तत्व का परमाणु द्रव्यमान वह संख्या है जो यह प्रदर्शित करता है कि उस तत्व का एक परमाणु, प्रांगार के एक परमाणु के १/१२ वें भाग से कितना गुना भारी है। .

नई!!: तरंग-कण द्वैतता और परमाणु भार · और देखें »

प्रमात्रा यान्त्रिकी

प्रमात्रा यान्त्रिकी (Quantum mechanics) कुछ वैज्ञानिक सिद्धान्तों का एक समुच्चय है जो परमाणवीय पैमाने पर उर्जा एवं पदार्थ के ज्ञात गुणधर्मों की व्याख्या करते हैं। इसमें उप-परमाणु पैमाने पर जो प्रकाश और उप-परमाण्वीय कणों में तरंग-कण द्विरूप देखा जाता है, उसका गणित आधार सम्मिलित है। क्वाण्टम यान्त्रिकी में उर्जा और पदार्थ के गहरे सम्बन्ध का भी गणित आधार सम्मिलित है। .

नई!!: तरंग-कण द्वैतता और प्रमात्रा यान्त्रिकी · और देखें »

प्रकाश

सूर्य के प्रकाश से प्रकाशित एक मेघ प्रकाश एक विद्युतचुम्बकीय विकिरण है, जिसकी तरंगदैर्ध्य दृश्य सीमा के भीतर होती है। तकनीकी या वैज्ञानिक संदर्भ में किसी भी तरंगदैर्घ्य के विकिरण को प्रकाश कहते हैं। प्रकाश का मूल कण फ़ोटान होता है। प्रकाश की तीन प्रमुख विमायें निम्नवत है।.

नई!!: तरंग-कण द्वैतता और प्रकाश · और देखें »

प्रकाश के सिद्धान्त

प्रकाश क्या है और वह किस रूप में स्थानांतरित होता है, इन प्रश्नों के समाधान के लिये समय समय पर अनेक सिद्धांत बनाए गए थे, किंतु इस समय विद्युतचुंबकीय सिद्धांत तथा क्वांटम सिद्धांत ही सर्वमान्य हैं।.

नई!!: तरंग-कण द्वैतता और प्रकाश के सिद्धान्त · और देखें »

प्रकाश-विद्युत प्रभाव

किसी धातु के प्लेट से एलेक्ट्रानों का उत्सर्जन प्रकाशविद्युत प्रभाव का अध्ययन करने के लिये प्रयोग। इसमें प्रकाश स्रोत एक पतली आवृत्ति बैण्ड वाला (लगभग एकवर्णी) लेते हैं। इस प्रकाश को कैथोड पर डालते हैं जो निर्वात में स्थित है। एनोड और कैथोड के बीच विभवान्तर से यह निर्धारित हो जाता है कि कैथोड से उत्सर्जित वे ही इलेक्ट्रान एनोड तक आ पायेंगे जिनके पास निकलते समय eV से अधिक गतिज ऊर्जा होगी। धारा की मात्रा (μA), प्राप्त इलेक्ट्रानों की संख्या के समानुपाती होगी। जब कोई पदार्थ (धातु एवं अधातु ठोस, द्रव एवं गैसें) किसी विद्युतचुम्बकीय विकिरण (जैसे एक्स-रे, दृष्य प्रकाश आदि) से उर्जा शोषित करने के बाद इलेक्ट्रॉन उत्सर्जित करता है तो इसे प्रकाश विद्युत प्रभाव (photoelectric effect) कहते हैं। इस क्रिया में जो एलेक्ट्रान निकलते हैं उन्हें "प्रकाश-इलेक्ट्रॉन" (photoelectrons) कहते हैं। सन 1887 मे एच.

नई!!: तरंग-कण द्वैतता और प्रकाश-विद्युत प्रभाव · और देखें »

फ़ोटोन

एक लेसर में प्रसारित होते कलासम्बद्ध प्रकाश के फ़ोटोन भौतिकी में फ़ोटोन या प्रकाशाणु प्रकाश और अन्य विद्युतचुंबकीय विकिरण (इलेक्ट्रोमैग्नेटिक रेडिएशन) के मूलभूत कण को बोला जाता है। फ़ोटोन का द्रव्यमान (और भार) शून्य होता है। सारे मूलभूत कणों की तरह फ़ोटोन भी तरंग-कण द्विरूप दर्शाते हैं, यानी उनमें तरंग और कण दोनों की ही प्रवृत्ति होती है। फोटोन का आधुनिक रूप "अलबर्ट आईंस्टाईन" ने अपने प्रयोगों द्वारा दिया जो कि प्रकाश के तरंग रूप की ब्याख्या नहीं कर सका। .

नई!!: तरंग-कण द्वैतता और फ़ोटोन · और देखें »

फिलिप लेनार्ड

फिलिप एडवर्ड एंटोन वॉन लेनार्ड (7 जून 1862 - 20 मई 1947), हंगरी मे Lénárd Fülöp Eduárd Antal, एक हंगरी - जर्मन भौतिकशास्त्री और कैथोड किरणों पर अपने शोध और उनके गुणों से कई की खोज के लिए भौतिकी के लिए 1905 में नोबेल पुरस्कार का विजेता थे। वे नाजी विचारधारा के एक सक्रिय समर्थक भी थे। .

नई!!: तरंग-कण द्वैतता और फिलिप लेनार्ड · और देखें »

ब्रह्माण्ड

ब्रह्माण्ड सम्पूर्ण समय और अंतरिक्ष और उसकी अंतर्वस्तु को कहते हैं। ब्रह्माण्ड में सभी ग्रह, तारे, गैलेक्सिया, गैलेक्सियों के बीच के अंतरिक्ष की अंतर्वस्तु, अपरमाणविक कण, और सारा पदार्थ और सारी ऊर्जा शामिल है। अवलोकन योग्य ब्रह्माण्ड का व्यास वर्तमान में लगभग 28 अरब पारसैक (91 अरब प्रकाश-वर्ष) है। पूरे ब्रह्माण्ड का व्यास अज्ञात है, और ये अनंत हो सकता है। .

नई!!: तरंग-कण द्वैतता और ब्रह्माण्ड · और देखें »

भौतिक शास्त्र

भौतिकी के अन्तर्गत बहुत से प्राकृतिक विज्ञान आते हैं भौतिक शास्त्र अथवा भौतिकी, प्रकृति विज्ञान की एक विशाल शाखा है। भौतिकी को परिभाषित करना कठिन है। कुछ विद्वानों के मतानुसार यह ऊर्जा विषयक विज्ञान है और इसमें ऊर्जा के रूपांतरण तथा उसके द्रव्य संबन्धों की विवेचना की जाती है। इसके द्वारा प्राकृत जगत और उसकी आन्तरिक क्रियाओं का अध्ययन किया जाता है। स्थान, काल, गति, द्रव्य, विद्युत, प्रकाश, ऊष्मा तथा ध्वनि इत्यादि अनेक विषय इसकी परिधि में आते हैं। यह विज्ञान का एक प्रमुख विभाग है। इसके सिद्धांत समूचे विज्ञान में मान्य हैं और विज्ञान के प्रत्येक अंग में लागू होते हैं। इसका क्षेत्र विस्तृत है और इसकी सीमा निर्धारित करना अति दुष्कर है। सभी वैज्ञानिक विषय अल्पाधिक मात्रा में इसके अंतर्गत आ जाते हैं। विज्ञान की अन्य शाखायें या तो सीधे ही भौतिक पर आधारित हैं, अथवा इनके तथ्यों को इसके मूल सिद्धांतों से संबद्ध करने का प्रयत्न किया जाता है। भौतिकी का महत्व इसलिये भी अधिक है कि अभियांत्रिकी तथा शिल्पविज्ञान की जन्मदात्री होने के नाते यह इस युग के अखिल सामाजिक एवं आर्थिक विकास की मूल प्रेरक है। बहुत पहले इसको दर्शन शास्त्र का अंग मानकर नैचुरल फिलॉसोफी या प्राकृतिक दर्शनशास्त्र कहते थे, किंतु १८७० ईस्वी के लगभग इसको वर्तमान नाम भौतिकी या फिजिक्स द्वारा संबोधित करने लगे। धीरे-धीरे यह विज्ञान उन्नति करता गया और इस समय तो इसके विकास की तीव्र गति देखकर, अग्रगण्य भौतिक विज्ञानियों को भी आश्चर्य हो रहा है। धीरे-धीरे इससे अनेक महत्वपूर्ण शाखाओं की उत्पत्ति हुई, जैसे रासायनिक भौतिकी, तारा भौतिकी, जीवभौतिकी, भूभौतिकी, नाभिकीय भौतिकी, आकाशीय भौतिकी इत्यादि। भौतिकी का मुख्य सिद्धांत "उर्जा संरक्षण का नियम" है। इसके अनुसार किसी भी द्रव्यसमुदाय की ऊर्जा की मात्रा स्थिर होती है। समुदाय की आंतरिक क्रियाओं द्वारा इस मात्रा को घटाना या बढ़ाना संभव नहीं। ऊर्जा के अनेक रूप होते हैं और उसका रूपांतरण हो सकता है, किंतु उसकी मात्रा में किसी प्रकार परिवर्तन करना संभव नहीं हो सकता। आइंस्टाइन के सापेक्षिकता सिद्धांत के अनुसार द्रव्यमान भी उर्जा में बदला जा सकता है। इस प्रकार ऊर्जा संरक्षण और द्रव्यमान संरक्षण दोनों सिद्धांतों का समन्वय हो जाता है और इस सिद्धांत के द्वारा भौतिकी और रसायन एक दूसरे से संबद्ध हो जाते हैं। .

नई!!: तरंग-कण द्वैतता और भौतिक शास्त्र · और देखें »

मानक विचलन

एक डाटा सेट जिसका मध्यमान 50 (नीले रंग में प्रदर्शित) और मानक विचलन (σ) 20 है। एक सामान्य वितरण (या घंटी वक्र) का एक भूखंडप्रत्येक रंग की पट्टी की चौड़ाई एक मानक विचलन है। प्रायिकता सिद्धांत और सांख्यिकी में, किसी सांख्यिकीय जनसंख्या, डाटा सेट या प्रायिकता वितरण के प्रसरण के वर्गमूल को मानक विचलन (स्टैण्डर्ड देविएशन) कहते हैं। मानक विचलन, व्यापक रूप से प्रयोग होने वाला एक मापदंड है प्रकीर्णन की माप करता है कि आंकड़े कितने 'फैले हुए' हैं। मानक विचलन बीजगणित की दृष्टि से अधिक सुविधाजनक है यद्यपि व्यावहारिक रूप से प्रत्याशित विचलन या औसत निरपेक्ष विचलन की तुलना में यह कम सुदृढ़ होता है। इससे पता चलता है कि यहां "औसत" (मध्यमान) से कितनी भिन्नता है। इसे वितरण के मध्यमान से अंकों के औसत अंतर के रूप में माना जा सकता है कि वे मध्यमान से कितनी दूर हैं। एक निम्न मानक विचलन इंगित करता है कि डाटा के अंक मध्यमान के बहुत समीप होते हैं जबकि उच्च मानक विचलन इंगित करता है कि डाटा, मानों की एक बहुत बड़ी श्रेणी पर फैला हुआ है। उदाहरण के लिए, संयुक्त राज्य अमेरिका में वयस्क पुरुषों की औसत ऊंचाई है और इसके साथ ही साथ इनका मानक विचलन लगभग है। इसका मतलब है कि अधिकांश पुरुषों (एक सामान्य वितरण की कल्पना के आधार पर लगभग 68 प्रतिशत) की ऊंचाई मध्यमान के के भीतर – एक मानक विचलन है जबकि लगभग सभी पुरुषों (लगभग 95%) की ऊंचाई मध्यमान के के भीतर – 2 मानक विचलन है। यदि मानक विचलन शून्य होता, तो सभी पुरुष वास्तव में ऊंचे होते.

नई!!: तरंग-कण द्वैतता और मानक विचलन · और देखें »

मैक्स प्लांक

युवा मैक्स प्लांक (१८७८) जर्मन वैज्ञानिक मैक्स प्लांक (Max Planck) का जन्म 23 अप्रैल 1858 को हुआ था। ग्रेजुएशन के बाद जब उसने भौतिकी का क्षेत्र चुना तो एक अध्यापक ने राय दी कि इस क्षेत्र में लगभग सभी कुछ खोजा जा चुका है अतः इसमें कार्य करना निरर्थक है। प्लांक ने जवाब दिया कि मैं पुरानी चीज़ें ही सीखना चाहता हूँ.

नई!!: तरंग-कण द्वैतता और मैक्स प्लांक · और देखें »

यूनानी

यूनानी का अर्थ यूनान-सम्बन्धी -- लोग, भाषा, संस्कृति अत्यदि। यूनानियों ने भारत को इंडिया कहा .

नई!!: तरंग-कण द्वैतता और यूनानी · और देखें »

लुई द ब्रॉई

लुई द ब्रॉई लुई द ब्रॉई (फ़्रांसिसी: Louis de Broglie, जन्म: १५ अगस्त १८९२, देहांत: १९ मार्च १९८७) एक फ़्रांसिसी भौतिकी वैज्ञानिक और नोबेल पुरस्कार विजेता थे। उन्होंने १९२४ में सारे पदार्थों के तरंग-कण द्विरूप होने का दावा किया था और उसके लिए गणित विकसित किया था। यह भविष्यवाणी आगे चलकर प्रयोगों में सिद्ध हो गयी। इनके नाम को भारतीय उपमहाद्वीप में अक्सर "लुई दि ब्रॉग्ली" उच्चारित किया जाता है, जो वास्तव में सही उच्चारण नहीं है। .

नई!!: तरंग-कण द्वैतता और लुई द ब्रॉई · और देखें »

समीकरण

---- समीकरण (equation) प्रतीकों की सहायता से व्यक्त किया गया एक गणितीय कथन है जो दो वस्तुओं को समान अथवा तुल्य बताता है। यह कहना अतिशयोक्ति नहीं होगी कि आधुनिक गणित में समीकरण सर्वाधिक महत्वपूर्ण विषय है। आधुनिक विज्ञान एवं तकनीकी में विभिन्न घटनाओं (फेनामेना) एवं प्रक्रियाओं का गणितीय मॉडल बनाने में समीकरण ही आधारका काम करने हैं। समीकरण लिखने में समता चिन्ह का प्रयोग किया जाता है। यथा- समीकरण प्राय: दो या दो से अधिक व्यंजकों (expressions) की समानता को दर्शाने के लिये प्रयुक्त होते हैं। किसी समीकरण में एक या एक से अधिक चर राशि (यां) (variables) होती हैं। चर राशि के जिस मान के लिये समीकरण के दोनो पक्ष बराबर हो जाते हैं, वह/वे मान समीकरण का हल या समीकरण का मूल (roots of the equation) कहलाता/कहलाते है। ऐसा समीकरण जो चर राशि के सभी मानों के लिये संतुष्ट होता है, उसे सर्वसमिका (identity) कहते हैं। जैसे - एक सर्वसमिका है। जबकि एक समीकरण है जिसका मूल हैं x.

नई!!: तरंग-कण द्वैतता और समीकरण · और देखें »

संवेग (भौतिकी)

समान द्रव्यमान के दो पिण्डों (''m''1 .

नई!!: तरंग-कण द्वैतता और संवेग (भौतिकी) · और देखें »

स्कॉट्लैण्ड

स्काटलैंड यूनाइटेड किंगडम का एक देश है। यह ग्रेट ब्रिटेन का उत्तरी भाग है। यह पहाड़ी देश है जिसका क्षेत्रफल ७८,८५० वर्ग किमी है। यह इंगलैंड के उत्तर में स्थित है। यहां की राजधानी एडिनबरा है। ग्लासगो यहाँ का सबसे बड़ा शहर है। स्कॉटलैण्ड की सीमा दक्षिण में इंग्लैंड से सटी है। इसके पूरब में उत्तरी सागर तथा दक्षिण-पश्चिम में नॉर्थ चैनेल और आयरिश सागर हैं। मुख्य भूमि के अलावा स्कॉटलैण्ड के अन्तर्गत ७९० से भी अधिक द्वीप हैं। यूँ तो स्कॉटलैंड यूनाइटेड किंगडम के अधीन एक राज्य है लेकिन यहाँ का अपना मंत्रिमंडल है। यहाँ की मुद्रा का रंग और उस पर बने चित्र भी लंदन के पौंड से कुछ अलग है। लेकिन उनकी मान्यता और मूल्य दोनों ही पौंड के समान है। यहाँ घूमने और लोगों से बात करने पर पता चलता है कि यहाँ के लोग इंग्लैंड सरकार से थोड़े से खफा रहते हैं। .

नई!!: तरंग-कण द्वैतता और स्कॉट्लैण्ड · और देखें »

हाइनरिख़ हर्ट्ज़

कार्ल्सरूह प्रौद्योगिकी संस्थान में हाइनरिख़ हर्ट्ज़ का स्मारक हाइनरिख़ रूडॉल्फ़ हर्ट्ज़ (जर्मन: Heinrich Rudolf Hertz, जन्म: २२ फ़रवरी १८५७, देहांत: १ जनवरी १८९४) एक जर्मन भौतिक विज्ञानी थे जिन्होंने जेम्स क्लर्क माक्सवेल द्वारा खोजे गए प्रकाश के मूल विद्युतचुम्बकीय विकिरण (इलेक्ट्रोमैग्नेटिक रेडिएशन) की तरंगों के सिद्धांत को और आगे विकसित किया। वे पहले वैज्ञानिक थे जिन्होंने प्रयोगशाला में रेडियो की तरंगों को प्रसारित करने और पकड़ने के यंत्र बनाये। उनके इस महत्वपूर्ण काम के लिए रडियो की आवृत्ति (फ़्रीक्वॅन्सी) के माप का नाम "हर्ट्ज़" (Hertz) रखा गया जिसे छोटे रूप में "Hz" लिखा जाता है। .

नई!!: तरंग-कण द्वैतता और हाइनरिख़ हर्ट्ज़ · और देखें »

जेम्स क्लर्क मैक्सवेल

जेम्स क्लर्क माक्सवेल जेम्स क्लार्क मैक्सवेल (James Clerk Maxwell) स्कॉटलैण्ड (यूके) के एक विख्यात गणितज्ञ एवं भौतिक वैज्ञानिक थे। इन्होंने 1865 ई. में विद्युत चुम्बकीय सिद्धान्त का प्रतिपादन किया जिससे रेडियो और टेलीविजन का आविष्कार सम्भव हो सका। क्लासिकल विद्युत चुंबकीय सिद्धांत, चुंबकत्व और प्रकाशिकी के क्षेत्र में दिए गए सिद्धांतों के लिए उन्हें प्रमुखता से याद किया जाता है। मैक्सवेल ने क्रांतिकारी विचार रखा कि प्रकाश विद्युत चुंबकीय तरंग है और यह माध्यम से स्वतंत्र है। स्कॉटिश भौतिकविद जेम्स क्लार्क मैक्सवेल ने इस सिद्धांत से क्रांति ला दी। न्यूटन के बाद विद्युतचुंबकत्व के क्षेत्र में मैक्सवेल द्वारा किए गए कार्य को भौतिकी के क्षेत्र में दूसरा सबसे बड़ा एकीकरण कार्य माना जाता है। यह कई क्षेत्रों से जुड़ा है। .

नई!!: तरंग-कण द्वैतता और जेम्स क्लर्क मैक्सवेल · और देखें »

वर्नर हाइजनबर्ग

वर्नर हाइजनबर्ग (जर्मन: Werner Heisenberg), जन्म: ५ दिसम्बर १९०१, देहांत: १ फ़रवरी १९७६) एक जर्मन सैद्धांतिक भौतिक विज्ञानी थे, जो क्वांटम यांत्रिकी में अपने मूलभूत योगदान के लिए जाने जाते हैं। उनके दिए गए अनिश्चितता सिद्धान्त को अब क्वांटम यांत्रिकी की एक आधारशिला माना जाता है। .

नई!!: तरंग-कण द्वैतता और वर्नर हाइजनबर्ग · और देखें »

विद्युतचुंबकीय विकिरण

विद्युतचुंबकीय तरंगों का दृष्यात्मक निरूपण विद्युत चुंबकीय विकिरण शून्य (स्पेस) एवं अन्य माध्यमों से स्वयं-प्रसारित तरंग होती है। इसे प्रकाश भी कहा जाता है किन्तु वास्तव में प्रकाश, विद्युतचुंबकीय विकिरण का एक छोटा सा भाग है। दृष्य प्रकाश, एक्स-किरण, गामा-किरण, रेडियो तरंगे आदि सभी विद्युतचुंबकीय तरंगे हैं। .

नई!!: तरंग-कण द्वैतता और विद्युतचुंबकीय विकिरण · और देखें »

विवर्तन

एक वर्गाकार द्वारक (aperture) से विवर्तन के परिणामस्वरूप पर्दे पर निर्मित विवर्तन पैटर्न जब प्रकाश या ध्वनि तरंगे किसी अवरोध से टकराती हैं, तो वे अवरोध के किनारों पर मुड जाती हैं और अवरोधक के की ज्यामितिय छाया में प्रवेश कर जती हैं। तरंगो के इस प्रकार मुड़ने की घटना को विवर्तन (Diffraction) कहते हैं। ऐसा पाया गया है कि लघु आकार के अवरोधों से टकराने के बाद तरंगें मुड़ जातीं हैं तथा जब लघु आकार के छिद्रों (openings) से होकर तरंग गुजरती है तो यह फैल जाती है। सभी प्रकार की तरंगों से विवर्तन होता है (ध्वनि, जल तरंग, विद्युतचुम्बकीय तरंग आदि)। .

नई!!: तरंग-कण द्वैतता और विवर्तन · और देखें »

गणितीय नियतांक

गणितीय नियतांक (mathematical constant) वह संख्या (प्राय: वास्तविक संख्या) है जो गणित में स्वभावत: उत्पन्न होती हैं। उदाहरण - पाई (π), आयलर संख्या ई (e) आदि। .

नई!!: तरंग-कण द्वैतता और गणितीय नियतांक · और देखें »

आवृत्ति

विभिन्न आवृतियों की तरंगें कोई आवृत घटना (बार-बार दोहराई जाने वाली घटना), इकाई समय में जितनी बार घटित होती है उसे उस घटना की आवृत्ति (frequency) कहते हैं। आवृति को किसी साइनाकार (sinusoidal) तरंग के कला (phase) परिवर्तन की दर के रूप में भी समझ सकते हैं। आवृति की इकाई हर्त्ज (साकल्स प्रति सेकण्ड) होती है। एक कम्पन पूरा करने में जितना समय लगता है उसे आवर्त काल (Time Period) कहते हैं। आवर्त काल .

नई!!: तरंग-कण द्वैतता और आवृत्ति · और देखें »

आइज़क न्यूटन

सर आइज़ैक न्यूटन इंग्लैंड के एक वैज्ञानिक थे। जिन्होंने गुरुत्वाकर्षण का नियम और गति के सिद्धांत की खोज की। वे एक महान गणितज्ञ, भौतिक वैज्ञानिक, ज्योतिष एवं दार्शनिक थे। इनका शोध प्रपत्र "प्राकृतिक दर्शन के गणितीय सिद्धांतों "" सन् १६८७ में प्रकाशित हुआ, जिसमें सार्वत्रिक गुर्त्वाकर्षण एवं गति के नियमों की व्याख्या की गई थी और इस प्रकार चिरसम्मत भौतिकी (क्लासिकल भौतिकी) की नींव रखी। उनकी फिलोसोफी नेचुरेलिस प्रिन्सिपिया मेथेमेटिका, 1687 में प्रकाशित हुई, यह विज्ञान के इतिहास में अपने आप में सबसे प्रभावशाली पुस्तक है, जो अधिकांश साहित्यिक यांत्रिकी के लिए आधारभूत कार्य की भूमिका निभाती है। इस कार्य में, न्यूटन ने सार्वत्रिक गुरुत्व और गति के तीन नियमों का वर्णन किया जिसने अगली तीन शताब्दियों के लिए भौतिक ब्रह्मांड के वैज्ञानिक दृष्टिकोण पर अपना वर्चस्व स्थापित कर लिया। न्यूटन ने दर्शाया कि पृथ्वी पर वस्तुओं की गति और आकाशीय पिंडों की गति का नियंत्रण प्राकृतिक नियमों के समान समुच्चय के द्वारा होता है, इसे दर्शाने के लिए उन्होंने ग्रहीय गति के केपलर के नियमों तथा अपने गुरुत्वाकर्षण के सिद्धांत के बीच निरंतरता स्थापित की, इस प्रकार से सूर्य केन्द्रीयता और वैज्ञानिक क्रांति के आधुनिकीकरण के बारे में पिछले संदेह को दूर किया। यांत्रिकी में, न्यूटन ने संवेग तथा कोणीय संवेग दोनों के संरक्षण के सिद्धांतों को स्थापित किया। प्रकाशिकी में, उन्होंने पहला व्यवहारिक परावर्ती दूरदर्शी बनाया और इस आधार पर रंग का सिद्धांत विकसित किया कि एक प्रिज्म श्वेत प्रकाश को कई रंगों में अपघटित कर देता है जो दृश्य स्पेक्ट्रम बनाते हैं। उन्होंने शीतलन का नियम दिया और ध्वनि की गति का अध्ययन किया। गणित में, अवकलन और समाकलन कलन के विकास का श्रेय गोटफ्राइड लीबनीज के साथ न्यूटन को जाता है। उन्होंने सामान्यीकृत द्विपद प्रमेय का भी प्रदर्शन किया और एक फलन के शून्यों के सन्निकटन के लिए तथाकथित "न्यूटन की विधि" का विकास किया और घात श्रृंखला के अध्ययन में योगदान दिया। वैज्ञानिकों के बीच न्यूटन की स्थिति बहुत शीर्ष पद पर है, ऐसा ब्रिटेन की रोयल सोसाइटी में 2005 में हुए वैज्ञानिकों के एक सर्वेक्षण के द्वारा प्रदर्शित होता है, जिसमें पूछा गया कि विज्ञान के इतिहास पर किसका प्रभाव अधिक गहरा है, न्यूटन का या एल्बर्ट आइंस्टीन का। इस सर्वेक्षण में न्यूटन को अधिक प्रभावी पाया गया।.

नई!!: तरंग-कण द्वैतता और आइज़क न्यूटन · और देखें »

इलेक्ट्रॉन

इलेक्ट्रॉन या विद्युदणु (प्राचीन यूनानी भाषा: ἤλεκτρον, लैटिन, अंग्रेज़ी, फ्रेंच, स्पेनिश: Electron, जर्मन: Elektron) ऋणात्मक वैद्युत आवेश युक्त मूलभूत उपपरमाणविक कण है। यह परमाणु में नाभिक के चारो ओर चक्कर लगाता हैं। इसका द्रव्यमान सबसे छोटे परमाणु (हाइड्रोजन) से भी हजारगुना कम होता है। परम्परागत रूप से इसके आवेश को ऋणात्मक माना जाता है और इसका मान -१ परमाणु इकाई (e) निर्धारित किया गया है। इस पर 1.6E-19 कूलाम्ब परिमाण का ऋण आवेश होता है। इसका द्रव्यमान 9.11E−31 किग्रा होता है जो प्रोटॉन के द्रव्यमान का लगभग १८३७ वां भाग है। किसी उदासीन परमाणु में विद्युदणुओं की संख्या और प्रोटानों की संख्या समान होती है। इनकी आंतरिक संरचना ज्ञात नहीं है इसलिए इसे प्राय:मूलभूत कण माना जाता है। इनकी आंतरिक प्रचक्रण १/२ होती है, अतः यह फर्मीय होते हैं। इलेक्ट्रॉन का प्रतिकणपोजीट्रॉन कहलाता है। द्रव्यमान के अलावा पोजीट्रॉन के सारे गुण यथा आवेश इत्यादि इलेक्ट्रॉन के बिलकुल विपरीत होते हैं। जब इलेक्ट्रॉन और पोजीट्रॉन की टक्कर होती है तो दोंनो पूर्णतः नष्ट हो जाते हैं एवं दो फोटॉन उत्पन्न होती है। इलेक्ट्रॉन, लेप्टॉन परिवार के प्रथम पीढी का सदस्य है, जो कि गुरुत्वाकर्षण, विद्युत चुम्बकत्व एवं दुर्बल प्रभाव सभी में भूमिका निभाता है। इलेक्ट्रॉन कण एवं तरंग दोनो तरह के व्यवहार प्रदर्शित करता है। बीटा-क्षय के रूप में यह कण जैसा व्यवहार करता है, जबकि यंग का डबल स्लिट प्रयोग (Young's double slit experiment) में इसका किरण जैसा व्यवहार सिद्ध हुआ। चूंकि इसका सांख्यिकीय व्यवहार फर्मिऑन होता है और यह पॉली एक्सक्ल्युसन सिध्दांत का पालन करता है। आइरिस भौतिकविद जॉर्ज जॉनस्टोन स्टोनी (George Johnstone Stoney) ने १८९४ में एलेक्ट्रों नाम का सुझाव दिया था। विद्युदणु की कण के रूप में पहचान १८९७ में जे जे थॉमसन (J J Thomson) और उनकी विलायती भौतिकविद दल ने की थी। कइ भौतिकीय घटनाएं जैसे-विध्युत, चुम्बकत्व, उष्मा चालकता में विद्युदणु की अहम भूमिका होती है। जब विद्युदणु त्वरित होता है तो यह फोटान के रूप मेंऊर्जा का अवशोषण या उत्सर्जन करता है।प्रोटॉन व न्यूट्रॉन के साथ मिलकर यह्परमाणु का निर्माण करता है।परमाणु के कुल द्रव्यमान में विद्युदणु का हिस्सा कम से कम् 0.0६ प्रतिशत होता है। विद्युदणु और प्रोटॉन के बीच लगने वाले कुलाम्ब बल (coulomb force) के कारण विद्युदणु परमाणु से बंधा होता है। दो या दो से अधिक परमाणुओं के विद्युदणुओं के आपसी आदान-प्रदान या साझेदारी के कारण रासायनिक बंध बनते हैं। ब्रह्माण्ड में अधिकतर विद्युदणुओं का निर्माण बिग-बैंग के दौरान हुआ है, इनका निर्माण रेडियोधर्मी समस्थानिक (radioactive isotope) से बीटा-क्षय और अंतरिक्षीय किरणो (cosmic ray) के वायुमंडल में प्रवेश के दौरान उच्च ऊर्जा टक्कर के कारण भी होता है।.

नई!!: तरंग-कण द्वैतता और इलेक्ट्रॉन · और देखें »

कृष्णिका

जैसे-जैसे तापमान कम होता है, कृष्णिका का विकिरण कर्व कम तीव्रता और लंबे तरंगदैर्घ्य की ओर बढ़ता है। कृष्णिका का विकिरण ग्राफ भी रेले और जीन्स के शास्त्रीय मॉडल के साथ तुलनीय होता है। कृष्णिका का रंग (वार्णिकता) कृष्णिका के तापमान पर निर्भर करता है, जैसे ऐसे रंग का ठिकाने की CIE 1931 एक्स, वाई अंतरिक्ष में यहां दिखाया गया है, जिसे प्लैंकियान लोकस के रूप में जाना जाता है। भौतिक विज्ञान में कृष्णिका पदार्थ की एक आदर्शीकृत अवस्था है, जो अपने ऊपर पड़ने वाले सभी विद्युत चुम्बकीय विकिरण अवशोषित कर लेता है। कृष्णिका एक विशेष और सतत वर्णक्रम (स्पेक्ट्रम) में विकिरण को अवशोषित और गर्म होने पर फिर से उत्सर्जित ‍करते हैं। क्योंकि कोई भी प्रकाश (दृश्य विद्युत चुम्बकीय विकिरण) परिलक्षित या संचरित नहीं होता है और वस्तु जब ठंडी होती है, तो काली दिखाई देती है। हालांकि एक कृष्णिका तापमान पर निर्भर प्रकाश वर्णक्रम का उत्सर्जन करता है। कृष्णिका से निकले इस सौर विकिरण को कृष्णिका विकिरण कहा जाता है। कृष्णिका के वर्णक्रम में तरंग की लंबाई (तरंगदैर्घ्य) जितनी छोटी होती है, आवृत्ति उतनी ही ज्यादा होती है और उच्च आवृत्ति उच्च तापमान से संबंधित होती है। इस प्रकार, एक गर्म वस्तु का रंग वर्णक्रम के नीले अंत के करीब होता है और एक ठंडी वस्तु का रंग लाल के करीब होता है। कमरे के तापमान पर, कृष्णिका ज्यादातर अवरक्त (इंफ्रारेड) तरंगदैर्घ्य फेंकते हैं, लेकिन तापमान के कुछ सौ डिग्री सेल्सियस बढ़ जाने पर कृष्णिका दृश्य तरंगदैर्घ्य उत्सर्जित करते हैं, जो तापमान बढ़ने के साथ ही लाल, नारंगी, पीले, उजले, नीले दिखते हैं। वस्तु के सफेद होने तक वह पर्याप्त मात्रा में पराबैंगनी विकिरण उत्सर्जित करती है। "कृष्णिका" शब्द 1860 मेंगुस्ताव किर्चाफ के द्वारा शुरू किया गया। जब इसका यौगिक विशेषण के रूप में प्रयोग किया जाता है, तो यह शब्द आम तौर पर "कृष्णिका विकिरण" या " ब्लैकबॉडी रेडियेशन" के रूप में एक शब्द में संयुक्त हो जाता है। कृष्णिका उत्सर्जन एक निरंतर जारी रहने वाले क्षेत्र के सौर संतुलनस्थिति की अंतर्दृष्टि प्रदान करता है। शास्त्रीय भौतिकी में सौर संतुलन में प्रत्येक अलग-अलग फूरियर मोड में समान ऊर्जा होनी चाहिए। इस दृष्टिकोण से एक विरोधाभास पैदा हुआ, जिसे पराबैंगनी आपदा के रूप में जाना जाता है और जिसमें सतत जारी रहने वाले क्षेत्र में ऊर्जा की एक अपार मात्रा होती है। कृष्णिका सौर संतुलन के गुणों का परीक्षण कर सकते हैं, क्योंकि वे जो सूर्य की किरणों द्वारा वितरित किये जाने वाले विकिरण उत्सर्जित करते हैं। ऐतिहासिक रूप से कृष्णिका के नियमों का अध्ययन करने से ही क्वांटम यांत्रिकी की अवधारणा आई। .

नई!!: तरंग-कण द्वैतता और कृष्णिका · और देखें »

अनिश्चितता सिद्धान्त

अनिश्चितता सिद्धान्त अनिश्चितता सिद्धान्त (Uncertainty principle) की व्युत्पत्ति हाइजनबर्ग ने क्वाण्टम यान्त्रिकी के व्यापक नियमों से सन् १९२७ ई. में दी थी। इस सिद्धान्त के अनुसार किसी गतिमान कण की स्थिति और संवेग को एक साथ एकदम ठीक-ठीक नहीं मापा जा सकता। यदि एक राशि अधिक शुद्धता से मापी जाएगी तो दूसरी के मापन में उतनी ही अशुद्धता बढ़ जाएगी, चाहे इसे मापने में कितनी ही कुशलता क्यों न बरती जाए। इन राशियों की अशुद्धियों का गुणनफल प्लांक नियतांक (h) से कम नहीं हो सकता। यदि किसी गतिमान कण के स्थिति निर्दशांक x के मापन में \Delta x, की त्रुटि (या अनिश्चितता) और x-अक्ष की दिशा में उसके संवेग p के मापने में \Delta p, की त्रुटि हो तो इस सिद्धांत के अनुसार - जहाँ, \hbar .

नई!!: तरंग-कण द्वैतता और अनिश्चितता सिद्धान्त · और देखें »

अरस्तु

अरस्तु अरस्तु (384 ईपू – 322 ईपू) यूनानी दार्शनिक थे। वे प्लेटो के शिष्य व सिकंदर के गुरु थे। उनका जन्म स्टेगेरिया नामक नगर में हुआ था ।  अरस्तु ने भौतिकी, आध्यात्म, कविता, नाटक, संगीत, तर्कशास्त्र, राजनीति शास्त्र, नीतिशास्त्र, जीव विज्ञान सहित कई विषयों पर रचना की। अरस्तु ने अपने गुरु प्लेटो के कार्य को आगे बढ़ाया। प्लेटो, सुकरात और अरस्तु पश्चिमी दर्शनशास्त्र के सबसे महान दार्शनिकों में एक थे।  उन्होंने पश्चिमी दर्शनशास्त्र पर पहली व्यापक रचना की, जिसमें नीति, तर्क, विज्ञान, राजनीति और आध्यात्म का मेलजोल था।  भौतिक विज्ञान पर अरस्तु के विचार ने मध्ययुगीन शिक्षा पर व्यापक प्रभाव डाला और इसका प्रभाव पुनर्जागरण पर भी पड़ा।  अंतिम रूप से न्यूटन के भौतिकवाद ने इसकी जगह ले लिया। जीव विज्ञान उनके कुछ संकल्पनाओं की पुष्टि उन्नीसवीं सदी में हुई।  उनके तर्कशास्त्र आज भी प्रासांगिक हैं।  उनकी आध्यात्मिक रचनाओं ने मध्ययुग में इस्लामिक और यहूदी विचारधारा को प्रभावित किया और वे आज भी क्रिश्चियन, खासकर रोमन कैथोलिक चर्च को प्रभावित कर रही हैं।  उनके दर्शन आज भी उच्च कक्षाओं में पढ़ाये जाते हैं।  अरस्तु ने अनेक रचनाएं की थी, जिसमें कई नष्ट हो गई। अरस्तु का राजनीति पर प्रसिद्ध ग्रंथ पोलिटिक्स है। .

नई!!: तरंग-कण द्वैतता और अरस्तु · और देखें »

अल्बर्ट आइंस्टीन

अल्बर्ट आइंस्टीन (Albert Einstein; १४ मार्च १८७९ - १८ अप्रैल १९५५) एक विश्वप्रसिद्ध सैद्धांतिक भौतिकविद् थे जो सापेक्षता के सिद्धांत और द्रव्यमान-ऊर्जा समीकरण E .

नई!!: तरंग-कण द्वैतता और अल्बर्ट आइंस्टीन · और देखें »

अवधारणा

अवधारणा या संकल्पना भाषा दर्शन का शब्द है जो संज्ञात्मक विज्ञान, तत्त्वमीमांसा एवं मस्तिष्क के दर्शन से सम्बन्धित है। इसे 'अर्थ' की संज्ञात्मक ईकाई; एक अमूर्त विचार या मानसिक प्रतीक के तौर पर समझा जाता है। अवधारणा के अंतर्गत यथार्थ की वस्तुओं तथा परिघटनाओं का संवेदनात्मक सामान्यीकृत बिंब, जो वस्तुओं तथा परिघटनाओं की ज्ञानेंद्रियों पर प्रत्यक्ष संक्रिया के बिना चेतना में बना रहता है तथा पुनर्सृजित होता है। यद्यपि अवधारणा व्यष्टिगत संवेदनात्मक परावर्तन का एक रूप है फिर भी मनुष्य में सामाजिक रूप से निर्मित मूल्यों से उसका अविच्छेद्य संबंध रहता है। अवधारणा भाषा के माध्यम से अभिव्यक्त होती है, उसका सामाजिक महत्व होता है और उसका सदैव बोध किया जाता है। अवधारणा चेतना का आवश्यक तत्व है, क्योंकि वह संकल्पनाओं के वस्तु-अर्थ तथा अर्थ को वस्तुओं के बिम्बों के साथ जोड़ती है और हमारी चेतना को वस्तुओं के संवेदनात्मक बिम्बों को स्वतंत्र रूप से परिचालित करने की संभावना प्रदान करती है। .

नई!!: तरंग-कण द्वैतता और अवधारणा · और देखें »

उष्मागतिकी

भौतिकी में उष्मागतिकी (उष्मा+गतिकी .

नई!!: तरंग-कण द्वैतता और उष्मागतिकी · और देखें »

यहां पुनर्निर्देश करता है:

तरंग-कण द्विरूप

निवर्तमानआने वाली
अरे! अब हम फेसबुक पर हैं! »