लोगो
यूनियनपीडिया
संचार
Google Play पर पाएं
नई! अपने एंड्रॉयड डिवाइस पर डाउनलोड यूनियनपीडिया!
इंस्टॉल करें
ब्राउज़र की तुलना में तेजी से पहुँच!
 

तनाव पुष्टि

सूची तनाव पुष्टि

निर्माण में प्रयुक्त इस्पात का प्रतिबल-विकृति ग्राफ 1. अधिकतम् सामर्थ्य (Ultimate Strength) 2. पराभव सामर्थ्य (Yield strength) 3. विभंजन (Rupture) 4. विकृति कठोरता क्षेत्र (Strain hardening region) 5. ग्रीवण क्षेत्र (Necking region) A: आभासी (इंजीनियरी) सामर्थ्य (Apparent (engineering) stress) (F/A0) B: वास्तविक (सत्य) प्रतिबल (F/A) किसी पदार्थ की तनन सामर्थ्य या तनाव पुष्टि (Tensile strength) (σUTS या SU) उस पदार्थ के प्रतिबल-विकृति वक्र (stress-strain curve) के महत्तम बिन्दु होता है तथा यह संकेत देता है कि किस प्रतिबल के बाद गर्दन बनना (necking) आरम्भ होगा। इसका मान परीक्षण के लिये ली गयी पदार्थ के नमूने के आकार (साइज) पर निर्भर नहीं करता। संरचनाओं (structures) तथा यांत्रिक युक्तियों में प्रयुक्त इंजीनियरी पदार्थों के लिये प्रत्यास्थता गुणांक तथा क्षरण प्रतिरोध (corrosion resistance) के साथ-साथ तनाव-पुष्टि अत्यन्त महत्व की राशि है। मिश्रधातुओं, कम्पोजिट पदार्थों, सिरैमिक्स, प्लास्टिकों, काष्ठ, कांक्रीट आदि के लिये इसके मान दिये जाते हैं। .

5 संबंधों: प्रतिबल-विकृति वक्र, संपीडन पुष्टि, संरचना इंजीनियरी, इस्पात, कार्बन नैनोट्यूब

प्रतिबल-विकृति वक्र

किसी पदार्थ में उत्पन्न प्रतिबल तथा विकृति के बीच सम्बन्ध उस पदार्थ का प्रतिबल-विकृति वक्र (stress–strain curve) कहलाता है। यह वक्र, प्रत्येक पदार्थ के लिए अद्वितीय होता है। इस ग्राफ को बनाने के लिए उस पदार्थ के एक नमूने पर अलग-अलग प्रतिबल (तनन प्रतिबल या सम्पीडक प्रतिबल) लगाया जाता है और उसके संगत विकृति को लिख लिया जाता है। इस वक्र की सहायता से उस पदार्थ के कई गुणधर्म प्राप्त हो जाते हैं, जैसे यंग मापांक (Modulus of Elasticity, E) । .

नई!!: तनाव पुष्टि और प्रतिबल-विकृति वक्र · और देखें »

संपीडन पुष्टि

संपीडित करने पर नमूने का फूल जाना (Barrelling) संपीडन सामर्थ्य या संपीडन पुष्टि (Compressive strength) किसी पदार्थ की उसके अक्ष की दिशा में लगे संपीडक बल (pushing forces) को सहने की क्षमता को इंगित करता है। जब किसी पदार्थ की संपीडन पुष्टि से भी अधिक प्रतिबल देने की कोशिश की जाती है, पदार्थ चकनाचूर (crushed) हो जाते हैं। कोई पदार्थ, बिना चकनाचूर (fracture) हुए, जो अधिकतम संपीडक प्रतिबल सह सकता है, उस मान को उस पदार्थ की संदलन सामर्थ्य (Crushing Strength) कहते हैं। .

नई!!: तनाव पुष्टि और संपीडन पुष्टि · और देखें »

संरचना इंजीनियरी

विश्व की सबसे बड़ी इमारत - '''बुर्ज दुबई''' संरचना इंजीनियरी, इंजीनियरी की वह शाखा है जो लोड (बल) सहन करने या बल का प्रतिरोध करने के के लिये बनायी जाने वाली संरचनाओं (structures) के विश्लेषण एवं डिजाइन से सम्बन्ध रखती है। इसे प्रायः सिविल इंजीनियरी के अन्दर एक विशेषज्ञता का क्षेत्र समझा जाता है। संरचना इंजीनियर का काम प्रायः भवनों तथा विशाल गैर-भवन संरचनाओं की डिजाइन करना होता है किन्तु वे मशीनरी, चिकित्सा उपकरण, वाहनों आदि के डिजाइन से भी जुड़े हो सकते हैं। संरचना इंजीनियरी का सिद्धान्त भौतिक नियमों तथा विभिन्न पदार्थों/ज्यामितियों के गुणधर्म से सम्बन्धित अनुभवजन्य ज्ञान पर आधारित है। अनेकों छोटे छोटे संरचनात्मक अवयवों के योग से जटिल संरचनाएँ निर्मित की जातीं हैं। संरचना इंजीनियर को लोहे और इस्पात का ही नहीं, बल्कि लकड़ी, ईंट, पत्थर, चूना और सीमेंट का भी आधुनिकतम ज्ञान तथा यांत्रिक एवं विद्युत् इंजीनियरी के कामों में भी दक्ष होना चाहिए, क्योंकि इन्हें अपने ढाँचे यांत्रिकी तथा भौतिकी के सिद्धांतों के अनुसार निरापद ढंग से बनाने पड़ते हैं। भूमि, जल और वायु की प्रकृति का भी पूर्ण ज्ञान सिविल इंजीनियर के समान ही होना चाहिए। .

नई!!: तनाव पुष्टि और संरचना इंजीनियरी · और देखें »

इस्पात

इस्पात (Steel), लोहा, कार्बन तथा कुछ अन्य तत्वों का मिश्रातु है। इसकी तन्य शक्ति (tensile strength) अधिक होती है जबकि प्रति टन मूल्य कम होने के कारण यह भवनों, अधोसंरचना, औजार, जलयान, वाहन, और मशीनों के निर्माण में प्रयुक्त होता है। 'इस्पात' शब्द इतने विविध प्रकार के परस्पर अत्यधिक भिन्न गुणोंवाले पदार्थो के लिए प्रयुक्त होता है कि इस शब्द की ठीक-ठीक परिभाषा करना वस्तुत: असंभव है। परंतु व्यवहारत: इस्पात से लोहे तथा कार्बन (कार्बन) की मिश्र धातु ही समझी जाती है (दूसरे तत्व भी साथ में चाहे हों अथवा न हों)। इसमें कार्बन की मात्रा साधारणतया 0.002% से 2.14% तक होती है। किसी अन्य तत्व की अपेक्षा कार्बन, लोहे के गुणों को अधिक प्रभावित करता है; इससे अद्वितीय विस्तार में विभिन्न गुण प्राप्त होते हैं। वेसे तो कई अन्य साधारण तत्व भी मिलाए जाने पर लोहे तथा इस्पात के गुणों को बहुत बदल देते हैं, परंतु इनमें कार्बन ही प्रधान मिश्रधातुकारी तत्व है। यह लोहे की कठोरता तथा पुष्टता समानुपातिक मात्रा में बढ़ाता है, विशेषकर उचित उष्मा उपचार के उपरांत। इस्पात एक मिश्रण है जिसमें अधिकांश हिस्सा लोहा का होता है। इस्पात में 0.2 प्रतिशत से 2.14 प्रतिशत के बीच कार्बन होता है। लोहा के साथ कार्बन सबसे किफायत मिश्रक होता है, लेकिन जरूरत के अनुसार, इसमें मैंगनीज, क्रोमियम, वैंनेडियम और टंग्सटन भी मिलाए जाते हैं। कार्बन और दूसरे पदार्थ मिश्र-धातु को कठोरता प्रदान करते हैं। लौहे के साथ, उचित मात्रा में मिश्रक मिलाकर लोहे को आवश्यक कठोरता, तन्यता और सुघट्यता प्रदान किया जाता है। लौहे में जितना ज्यादा कार्बन मिलाते हैं इस्पात उतना ही कठोर बनता जाता है, कठोरता बढ़ने के साथ ही उसकी भंगुरता भी बढ़ती जाती है। 1149 डिग्री सेल्सियस पर लौहे में कार्बन की अधिकतम घुल्यता 2.14 प्रतिशत है। कम तापमान पर अगर लौहे में ज्यादा मात्रा में कार्बन हो तो इससे सिमेंटाइट का निर्माण होगा। लौहे में अगर इससे ज्यादा कार्बन हो तो यह कास्ट आयरन कहलाता है, क्योंकि इसका गलनाक कम हो जाता है। इस्पात, कास्ट आयरन से इसलिए भी अलग होता है क्योंकि इसमें दूसरे तत्वों की मात्रा अत्यंत कम होती है यानी 1 से तीन प्रतिशत के करीब.

नई!!: तनाव पुष्टि और इस्पात · और देखें »

कार्बन नैनोट्यूब

कार्बन नैनोट्यूब का घूर्णन करता यह एनिमेशन उसकी 3 डी संरचना को दर्शाता है। कार्बन नैनोट्यूब (CNTs) एक बेलनाकार नैनोसंरचना वाले कार्बन के एलोट्रोप्स हैं। नैनोट्यूब को 28,000,000:1 तक के लंबाई से व्यास अनुपात के साथ निर्मित किया गया है, जो महत्वपूर्ण रूप से किसी भी अन्य द्रव्य से बड़ा है। इन बेलनाकार कार्बन अणुओं में नवीन गुण हैं जो उन्हें नैनोतकनीक, इलेक्ट्रॉनिक्स, प्रकाशिकी और पदार्थ विज्ञान के अन्य क्षेत्रों के कई अनुप्रयोगों के साथ-साथ वास्तु क्षेत्र में संभावित रूप से उपयोगी बनाते हैं। वे असाधारण शक्ति और अद्वितीय विद्युत् गुण प्रदर्शित करते हैं और कुशल ताप परिचालक हैं। उनका अंतिम उपयोग, लेकिन, उनकी संभावित विषाक्तता और रासायनिक शोधन की प्रतिक्रिया में उनके गुण परिवर्तन को नियंत्रित करने के द्वारा सीमित हो सकता है। नैनोट्यूब फुलरीन संरचनात्मक परिवार के सदस्य हैं, जिसमें गोलाकार बकिबॉल भी शामिल हैं। एक नैनोट्यूब के छोर को बकिबॉल संरचना के एक गोलार्द्ध के साथ ढका जा सकता है। उनका नाम उनके आकार से लिया गया है, चूंकि एक नैनोट्यूब का व्यास कुछ नैनोमीटर के क्रम में है (एक मानव बाल की चौड़ाई का लगभग 1/50,000 वां हिस्सा), जबकि वे लंबाई में कई मिलीमीटर हो सकते हैं (यथा 2008).

नई!!: तनाव पुष्टि और कार्बन नैनोट्यूब · और देखें »

यहां पुनर्निर्देश करता है:

तनन सामर्थ्य

निवर्तमानआने वाली
अरे! अब हम फेसबुक पर हैं! »