लोगो
यूनियनपीडिया
संचार
Google Play पर पाएं
नई! अपने एंड्रॉयड डिवाइस पर डाउनलोड यूनियनपीडिया!
इंस्टॉल करें
ब्राउज़र की तुलना में तेजी से पहुँच!
 

ठोस अवस्था भौतिकी

सूची ठोस अवस्था भौतिकी

हीरा की संरचना का चलित दृष्य ठोस अवस्था की भौतिकी (Solid-state physics) को ठोस अवस्था का सिद्धांत (Solid-state theory) के नाम से भी जाना जाता है। यह भौतिकी की वह शाखा है जिसमें ठोस की संरचना और उसके भौतिक गुणों का अध्ययन किया जाता है। यह संघनित प्रावस्था भौतिकी की सबसे बड़ी शाखा है। ठोस अवस्था भौतिकी में इस बात पर विचार किया जाता है कि ठोसों के वाह्य गुण उनके परमाणु-स्तरीय गुणों से किस प्रकार सम्बन्धित हैं। इस प्रकार ठोस अवस्था भौतिकी, पदार्थ विज्ञान का सैद्धान्तिक आधार बनाती है। इसके अलावा ट्रांजिस्टरों की प्रौद्योगिकी एवं अर्धचालकों की तकनीकी आदि में इसका सीधा उपयोग भी होता है। .

37 संबंधों: ऊर्ध्वपातन (रसायन), ऊष्मा धारिता, ऍक्स किरण, ठोस, तन्यता, ताम्र, द्रवण, द्रव्य, धातुकर्म, पदार्थ विज्ञान, पहला विश्व युद्ध, पुनर्जागरण, प्रतिबल, प्रमात्रा यान्त्रिकी, प्राचल, पॉलीमर, फलन, भंगुरता, भौतिक शास्त्र, भौतिक गुण, मिश्रातु, मुक्त इलेक्ट्रॉन मॉडल, मृत्तिकाशिल्प, मेसर, रबड़, सांख्यिकीय यांत्रिकी, संघनित द्रव्य भौतिकी, जस्ता, घनत्व, विसरण, विकृति, गंधक, इस्पात, कांच, अतिचालकता, अनुनाद, उष्मागतिकी

ऊर्ध्वपातन (रसायन)

ऊर्ध्वपातन वह प्रक्रिया है जिसमें कोई पदार्थ ठोस अवस्था से वाष्प अवस्था में बिना तरल अवस्था ग्रहण किए परिवर्तित हो जाता है। जैसे कपूर का ठोस अवस्था से सीधे वाष्प के रूप में उड़ जाना। .

नई!!: ठोस अवस्था भौतिकी और ऊर्ध्वपातन (रसायन) · और देखें »

ऊष्मा धारिता

किसी पदार्थ के द्रव्यमान का ताप एक डिग्री सेल्सियस बढ़ाने के लिए आवश्यक ऊष्मा की मात्रा को उस पदार्थ की ऊष्मा धारिता (Heat capacity) कहते हैं। इस भौतिक राशि का एस आई मात्रक जूल प्रति केल्विन (J/K) है। ऊष्मा धारिता की विमा है। सूत्र के रूप में, जहाँ, C पदार्थ की ऊष्मा-धारिता है। .

नई!!: ठोस अवस्था भौतिकी और ऊष्मा धारिता · और देखें »

ऍक्स किरण

200px ''Hand mit Ringen'': रोएन्टजन की पहली 'मेडिकल' एक्स-किरण का प्रिन्ट - उनकी पत्नी का हाथ का प्रिन्ट जो २२ दिसम्बर सन् १८९५ को लिया गया था जल से शीतलित एक्स-किरण नलिका (सरलीकृत/कालातीत हो चुकी है।) एक्स-किरण या एक्स रे (X-Ray) एक प्रकार का विद्युत चुम्बकीय विकिरण है जिसकी तरंगदैर्घ्य 10 से 0.01 नैनोमीटर होती है। यह चिकित्सा में निदान (diagnostics) के लिये सर्वाधिक प्रयोग की जाती है। यह एक प्रकार का आयनकारी विकिरण है, इसलिए खतरनाक भी है। कई भाषाओं में इसे रॉण्टजन विकिरण भी कहते हैं, जो कि इसके अन्वेषक विल्हेल्म कॉनरॅड रॉण्टजन के नाम पर आधारित है। रॉण्टजन ईक्वेलेंट मानव (Röntgen equivalent man / REM) इसकी शास्त्रीय मापक इकाई है। .

नई!!: ठोस अवस्था भौतिकी और ऍक्स किरण · और देखें »

ठोस

ठोस (solid) पदार्थ की एक अवस्था है, जिसकी पहचान पदार्थ की संरचनात्मक दृढ़ता और विकृति (आकार, आयतन और स्वरूप में परिवर्तन) के प्रति प्रत्यक्ष अवरोध के गुण के आधार पर की जाती है। ठोस पदार्थों में उच्च यंग मापांक और अपरूपता मापांक होते है। इसके विपरीत, ज्यादातर तरल पदार्थ निम्न अपरूपता मापांक वाले होते हैं और श्यानता का प्रदर्शन करते हैं। भौतिक विज्ञान की जिस शाखा में ठोस का अध्ययन करते हैं, उसे ठोस-अवस्था भौतिकी कहते हैं। पदार्थ विज्ञान में ठोस पदार्थों के भौतिक और रासायनिक गुणों और उनके अनुप्रयोग का अध्ययन करते हैं। ठोस-अवस्था रसायन में पदार्थों के संश्लेषण, उनकी पहचान और रासायनिक संघटन का अध्ययन किया जाता है। .

नई!!: ठोस अवस्था भौतिकी और ठोस · और देखें »

तन्यता

ताम्बा अपनी तन्यता के कारण, बिना टूटे, तारों में खींचा जा सकता है बेलनाकार छड़ के सिरों को विपरीत दिशा में खींचकर तानने पर:(क) भंगुर पदार्थ का भंजन (टूटना)(ख) तन्य पदार्थ का भंजन (ग) पूर्णतः तन्य पदार्थ का भंजन पदार्थ विज्ञान में तन्यता (ductility) किसी ठोस पदार्थ की तनाव डालने पर खिचकर आकार बदल लेने की क्षमता को बोलते हैं। तन्य पदार्थ (ductile materials) आसानी से खींचकर तार के रूप में बनाए जा सकते हैं, जबकि अतन्य (non-ductile) पदार्थ तनाव डालने पर असानी से नहीं खिंचते और अक्सर टूट जाते हैं। सोना और ताम्बा दोनों तन्य पदार्थों के उदाहरण हैं। इसी तरह आघातवर्धनीयता (Malleability) किसी पदार्थ की दबाव या आघात पड़ने पर बिना टूटे आकार बदल लेने की क्षमता को कहते हैं। मसलन चाँदी को पीटकर उसका मिठाई व पान पर चढ़ाने वाला वर्क इसलिए बनाया जा सकता है क्योंकि वह तत्व आघातवर्धनीय (malleable) है। .

नई!!: ठोस अवस्था भौतिकी और तन्यता · और देखें »

ताम्र

तांबा (ताम्र) एक भौतिक तत्त्व है। इसका संकेत Cu (अंग्रेज़ी - Copper) है। इसकी परमाणु संख्या 29 और परमाणु भार 63.5 है। यह एक तन्य धातु है जिसका प्रयोग विद्युत के चालक के रूप में प्रधानता से किया जाता है। मानव सभ्यता के इतिहास में तांबे का एक प्रमुख स्थान है क्योंकि प्राचीन काल में मानव द्वारा सबसे पहले प्रयुक्त धातुओं और मिश्रधातुओं में तांबा और कांसे (जो कि तांबे और टिन से मिलकर बनता है) का नाम आता है। .

नई!!: ठोस अवस्था भौतिकी और ताम्र · और देखें »

द्रवण

पदार्थ विज्ञान के सन्दर्भ में द्रवण (Liquefaction) उन सभी प्रक्रियाओं को कहते हैं जो ठोस से या द्रव से आरम्भ होकर गैस बनाते हैं। .

नई!!: ठोस अवस्था भौतिकी और द्रवण · और देखें »

द्रव्य

द्रव्य से आशय निम्नलिखित से हो सकता है.

नई!!: ठोस अवस्था भौतिकी और द्रव्य · और देखें »

धातुकर्म

धातुनिर्माता कारखाने में इस्पात का निर्माण दिल्ली का लौह-स्तम्भ भारतीय धातुकर्म के गौरव का साक्षी है। धातुकर्म पदार्थ विज्ञान और पदार्थ अभियांत्रिकी का एक क्षेत्र है, जिसके अंतर्गत धातुओं, उनसे बनी मिश्रधातुओं और अंतर्धात्विक यौगिकों के भौतिक और रासायनिक गुणों का अध्ययन किया जाता है। .

नई!!: ठोस अवस्था भौतिकी और धातुकर्म · और देखें »

पदार्थ विज्ञान

पदार्थ विज्ञान एक बहुविषयक क्षेत्र है जिसमें पदार्थ के विभिन्न गुणों का अध्ययन, विज्ञान एवं तकनीकी के विभिन्न क्षेत्रों में इसके प्रयोग का अध्ययन किया जाता है। इसमें प्रायोगिक भौतिक विज्ञान और रसायनशास्त्र के साथ-साथ रासायनिक, वैद्युत, यांत्रिक और धातुकर्म अभियांत्रिकी जैसे विषयों का समावेश होता है। नैनोतकनीकी और नैनोसाइंस में उपयोजता के कारण, वर्तमान समय में विभिन्न विश्वविद्यालयों, प्रयोगशालाओं और संस्थानों में इसे काफी महत्व मिला है। .

नई!!: ठोस अवस्था भौतिकी और पदार्थ विज्ञान · और देखें »

पहला विश्व युद्ध

पहला विश्व युद्ध 1914 से 1918 तक मुख्य तौर पर यूरोप में व्याप्त महायुद्ध को कहते हैं। यह महायुद्ध यूरोप, एशिया व अफ़्रीका तीन महाद्वीपों और समुंदर, धरती और आकाश में लड़ा गया। इसमें भाग लेने वाले देशों की संख्या, इसका क्षेत्र (जिसमें यह लड़ा गया) तथा इससे हुई क्षति के अभूतपूर्व आंकड़ों के कारण ही इसे विश्व युद्ध कहते हैं। पहला विश्व युद्ध लगभग 52 माह तक चला और उस समय की पीढ़ी के लिए यह जीवन की दृष्टि बदल देने वाला अनुभव था। क़रीब आधी दुनिया हिंसा की चपेट में चली गई और इस दौरान अंदाज़न एक करोड़ लोगों की जान गई और इससे दोगुने घायल हो गए। इसके अलावा बीमारियों और कुपोषण जैसी घटनाओं से भी लाखों लोग मरे। विश्व युद्ध ख़त्म होते-होते चार बड़े साम्राज्य रूस, जर्मनी, ऑस्ट्रिया-हंगरी (हैप्सबर्ग) और उस्मानिया ढह गए। यूरोप की सीमाएँ फिर से निर्धारित हुई और अमेरिका निश्चित तौर पर एक 'महाशक्ति ' बन कर उभरा। .

नई!!: ठोस अवस्था भौतिकी और पहला विश्व युद्ध · और देखें »

पुनर्जागरण

फ्लोरेंस पुनर्जागरण का केन्द्र था पुनर्जागरण या रिनैंसा यूरोप में मध्यकाल में आये एक संस्कृतिक आन्दोलन को कहते हैं। यह आन्दोलन इटली से आरम्भ होकर पूरे यूरोप फैल गया। इस आन्दोलन का समय चौदहवीं शताब्दी से लेकर सत्रहवीं शताब्दी तक माना जाता है।.

नई!!: ठोस अवस्था भौतिकी और पुनर्जागरण · और देखें »

प्रतिबल

विभिन्न प्रकार के प्रतिबल सतत यांत्रिकी में प्रतिबल (stress) से आशय ईकाई क्षेत्रफल पर आरोपित उस आन्तरिक बल से है जो दूसरे कणों द्वारा अपने पड़ोसी कणों पर लगाया जाता है। इसकी इकाई न्यूटन/वर्ग मीटर या पासकल या किलोग्राम/मीटर/वर्ग सेकेण्ड होता है। किसी बिन्दु के आसपास एक अत्यन्त छोटे से क्षेत्र \Delta A पर \Delta\vec F बल लगा हो तो कुल प्रतिबल \vec s निम्नलिखित प्रकार से परिभाषित किया जाता है- कुल प्रतिबल को निम्नलिखित दो प्रतिबलों के सदिश योग के रूप में भी लिखा जा सकता है: जहाँ: तीन विमाओं में प्रतिबल के घटक .

नई!!: ठोस अवस्था भौतिकी और प्रतिबल · और देखें »

प्रमात्रा यान्त्रिकी

प्रमात्रा यान्त्रिकी (Quantum mechanics) कुछ वैज्ञानिक सिद्धान्तों का एक समुच्चय है जो परमाणवीय पैमाने पर उर्जा एवं पदार्थ के ज्ञात गुणधर्मों की व्याख्या करते हैं। इसमें उप-परमाणु पैमाने पर जो प्रकाश और उप-परमाण्वीय कणों में तरंग-कण द्विरूप देखा जाता है, उसका गणित आधार सम्मिलित है। क्वाण्टम यान्त्रिकी में उर्जा और पदार्थ के गहरे सम्बन्ध का भी गणित आधार सम्मिलित है। .

नई!!: ठोस अवस्था भौतिकी और प्रमात्रा यान्त्रिकी · और देखें »

प्राचल

गणित, सांख्यिकी एवं गणितीय विज्ञानों में उस राशि को प्राचल (parameter) कहते हैं जो फलनों एवं चरों को एक उभयनिष्ट (कॉमन) चर की सहायता से परस्पर जोड़ती है। प्राय: t को प्राचल के रूप में प्रयोग किया जाता है। प्राचल के प्रयोग से चरों के सम्बन्ध सरल तरीके से अभिव्यक्त् करने की सुविधा प्राप्त हो जाती है। दूसरे शब्दों में, प्राचल के प्रयोग के बिना राशियों का आपसी सम्बन्ध एक समीकरण की सहायता से बताना बहुत कठिन, असम्भव या जटिल होता है। ध्यातव्य है कि प्राचल शब्द का प्रयोग अलग-अलग संदर्भों में भिन्न-भिन्न प्रकार से किया जाता है। .

नई!!: ठोस अवस्था भौतिकी और प्राचल · और देखें »

पॉलीमर

रिअल लीनिअर पॉलीमर कड़ियां, जो परमाणिव्क बल सूक्ष्मदर्शी द्वारा तरल माध्यम के अधीन देखी गयी हैं। इस बहुलक की चेन लंबाई ~२०४ नैनो.मीटर; मोटाई is ~०.४ नै.मी.वाई.रोइटर एवं एस.मिंको, http://dx.doi.org/10.1021/ja0558239 ईफ़एम सिंगल मॉलिक्यूल एक्स्पेरिमेंट्स ऐट सॉलिड-लिक्विड इंटरफ़ेस, अमरीकन कैमिकल सोसायटी का जर्नल, खण्ड १२७, ss. 45, pp. 15688-15689 (2005) वहुलक या पाॅलीमर बहुत अधिक अणु मात्रा वाला कार्बनिक यौगिक होता है। यह सरल अणुओं जिन्हें मोनोमर कहा जाता; के बहुत अधिक इकाईयों के पॉलीमेराइजेशन के फलस्वरूप बनता है।। नैनोविज्ञान। वर्ल्डप्रेस पर पॉलीमर में बहुत सारी एक ही तरह की आवर्ती संरचनात्मक इकाईयाँ यानि मोनोमर संयोजी बन्ध (कोवैलेन्ट बॉण्ड) से जुड़ी होती हैं। सेल्यूलोज, लकड़ी, रेशम, त्वचा, रबर आदि प्राकृतिक पॉलीमर हैं, ये खुली अवस्था में प्रकृति में पाए जाते हैं तथा इन्हें पौधों और जीवधारियों से प्राप्त किया जाता है। इसके रासायनिक नामों वाले अन्य उदाहरणों में पालीइथिलीन, टेफ्लान, पाॅली विनाइल क्लोराइड प्रमुख पाॅलीमर हैं। कृत्रिम या सिंथेटिक पॉलीमर मानव निर्मित होते हैं। इन्हें कारखानों में उत्पादित किया जा सकता है। प्लास्टिक, पाइपों, बोतलों, बाल्टियों आदि के निर्माण में प्रयुक्त होने वाली पोलीथिन सिंथेटिक पॉलीमर है। बिजली के तारों, केबलों के ऊपर चढ़ाई जाने वाली प्लास्टिक कवर भी सिंथेटिक पॉलीमर है। फाइबर, सीटकवर, मजबूत पाइप एवं बोतलों के निर्माण में प्रयुक्त होने वाली प्रोपाइलीन भी सिंथेटिक पॉलीमर है। वाल्व सील, फिल्टर क्लॉथ, गैस किट आदि टेफलॉन से बनाए जाते हैं। सिंथेटिक रबर भी पॉलीमर है जिससे मोटरगाड़ियों के टायर बनाए जाते हैं। हॉलैंड के वैज्ञानिकों के अनुसार मकड़ी में उपस्थित एक डोप नामक तरल पदार्थ उसके शरीर से बाहर निकलते ही एकप प्रोटीनयुक्त पॉलीमर के रूप में जाला बनाता है। पॉलीमर शब्द का प्रथम प्रयोग जोंस बर्जिलियस ने १८३३ में किया था। १९०७ में लियो बैकलैंड ने पहला सिंथेटिक पोलीमर, फिनोल और फॉर्मएल्डिहाइड की प्रक्रिया से बनाया। उन्होंने इसे बैकेलाइट नाम दिया। १९२२ में हर्मन स्टॉडिंगर को पॉलीमर के नए सिद्धांत को प्रतिपादित करने के लिए नोबल पुरस्कार से सम्मानित किया गया था। इससे पहले यह माना जाता था कि ये छोटे अणुओं का क्लस्टर है, जिन्हें कोलाइड्स कहते थे, जिसका आण्विक भार ज्ञात नहीं था। लेकिन इस सिद्धांत में कहा गया कि पाॅलीमर एक शृंखला में कोवेलेंट बंध द्वारा बंधे होते हैं। पॉलीमर शब्द पॉली (कई) और मेरोस (टुकड़ों) से मिलकर बना है। एक ही प्रकार की मोनोमर इकाईयों से बनने वाले बहुलक को होमोपॉलीमर कहते हैं। जैसे पॉलीस्टायरीन का एकमात्र मोनोमर स्टायरीन ही है। भिन्न प्रकार की मोनोमर इकाईयों से बनने वाले बहुलक को कोपॉलीमर कहते हैं। जैसे इथाइल-विनाइल-एसीटेट भिन्न प्रकार के मोनोमरों से बनता है। भौतिक व रासायनिक गुणों के आधार पर इन्हें दो वर्गों में बांटा जा सकता है: right.

नई!!: ठोस अवस्था भौतिकी और पॉलीमर · और देखें »

फलन

''X'' के किसी सदस्य का ''Y'' के केवल एक सदस्य से सम्बन्ध हो तो वह फलन है अन्यथा नहीं। ''Y''' के कुछ सदस्यों का '''X''' के किसी भी सदस्य से सम्बन्ध '''न''' होने पर भी फलन परिभाषित है। गणित में जब कोई राशि का मान किसी एक या एकाधिक राशियों के मान पर निर्भर करता है तो इस संकल्पना को व्यक्त करने के लिये फलन (function) शब्द का प्रयोग किया जाता है। उदाहरण के लिये किसी ऋण पर चक्रवृद्धि ब्याज की राशि मूलधन, समय एवं ब्याज की दर पर निर्भर करती है; इसलिये गणित की भाषा में कह सकते हैं कि चक्रवृद्धि ब्याज, मूलधन, ब्याज की दर तथा समय का फलन है। स्पष्ट है कि किसी फलन के साथ दो प्रकार की राशियां सम्बन्धित होती हैं -.

नई!!: ठोस अवस्था भौतिकी और फलन · और देखें »

भंगुरता

टूटा हुआ काँच किसी पदार्थ को प्रतिबलित करने पर (तानने, दबाने, मोड़ने, पीटने आदि पर) यदि विकृत होने (तनने, सिकुड़ने, मुड़ने, फैलने आदि) के बजाय टूट जाय तो पदार्थ के इस गुण को भंगुरता (Brittleness) कहते हैं। अधिकांश सिरामिक पदार्थ, काँच और कुछ बहुलक भंगुर हैं। .

नई!!: ठोस अवस्था भौतिकी और भंगुरता · और देखें »

भौतिक शास्त्र

भौतिकी के अन्तर्गत बहुत से प्राकृतिक विज्ञान आते हैं भौतिक शास्त्र अथवा भौतिकी, प्रकृति विज्ञान की एक विशाल शाखा है। भौतिकी को परिभाषित करना कठिन है। कुछ विद्वानों के मतानुसार यह ऊर्जा विषयक विज्ञान है और इसमें ऊर्जा के रूपांतरण तथा उसके द्रव्य संबन्धों की विवेचना की जाती है। इसके द्वारा प्राकृत जगत और उसकी आन्तरिक क्रियाओं का अध्ययन किया जाता है। स्थान, काल, गति, द्रव्य, विद्युत, प्रकाश, ऊष्मा तथा ध्वनि इत्यादि अनेक विषय इसकी परिधि में आते हैं। यह विज्ञान का एक प्रमुख विभाग है। इसके सिद्धांत समूचे विज्ञान में मान्य हैं और विज्ञान के प्रत्येक अंग में लागू होते हैं। इसका क्षेत्र विस्तृत है और इसकी सीमा निर्धारित करना अति दुष्कर है। सभी वैज्ञानिक विषय अल्पाधिक मात्रा में इसके अंतर्गत आ जाते हैं। विज्ञान की अन्य शाखायें या तो सीधे ही भौतिक पर आधारित हैं, अथवा इनके तथ्यों को इसके मूल सिद्धांतों से संबद्ध करने का प्रयत्न किया जाता है। भौतिकी का महत्व इसलिये भी अधिक है कि अभियांत्रिकी तथा शिल्पविज्ञान की जन्मदात्री होने के नाते यह इस युग के अखिल सामाजिक एवं आर्थिक विकास की मूल प्रेरक है। बहुत पहले इसको दर्शन शास्त्र का अंग मानकर नैचुरल फिलॉसोफी या प्राकृतिक दर्शनशास्त्र कहते थे, किंतु १८७० ईस्वी के लगभग इसको वर्तमान नाम भौतिकी या फिजिक्स द्वारा संबोधित करने लगे। धीरे-धीरे यह विज्ञान उन्नति करता गया और इस समय तो इसके विकास की तीव्र गति देखकर, अग्रगण्य भौतिक विज्ञानियों को भी आश्चर्य हो रहा है। धीरे-धीरे इससे अनेक महत्वपूर्ण शाखाओं की उत्पत्ति हुई, जैसे रासायनिक भौतिकी, तारा भौतिकी, जीवभौतिकी, भूभौतिकी, नाभिकीय भौतिकी, आकाशीय भौतिकी इत्यादि। भौतिकी का मुख्य सिद्धांत "उर्जा संरक्षण का नियम" है। इसके अनुसार किसी भी द्रव्यसमुदाय की ऊर्जा की मात्रा स्थिर होती है। समुदाय की आंतरिक क्रियाओं द्वारा इस मात्रा को घटाना या बढ़ाना संभव नहीं। ऊर्जा के अनेक रूप होते हैं और उसका रूपांतरण हो सकता है, किंतु उसकी मात्रा में किसी प्रकार परिवर्तन करना संभव नहीं हो सकता। आइंस्टाइन के सापेक्षिकता सिद्धांत के अनुसार द्रव्यमान भी उर्जा में बदला जा सकता है। इस प्रकार ऊर्जा संरक्षण और द्रव्यमान संरक्षण दोनों सिद्धांतों का समन्वय हो जाता है और इस सिद्धांत के द्वारा भौतिकी और रसायन एक दूसरे से संबद्ध हो जाते हैं। .

नई!!: ठोस अवस्था भौतिकी और भौतिक शास्त्र · और देखें »

भौतिक गुण

किसी भौतिक प्रणाली के किसी भी मापने योग्य गुण को भौतिक गुण (physical property) कहते हैं जो उस प्रणाली की बहुतिक अवस्था का सूचक है। इसके विपरीत वे गुण जो यह बताते हैं कि कोई वस्तु किसी रासायनिक अभिक्रिया में कैसा व्यवहार करती है, उसका रासायनिक गुण कहलाती है। .

नई!!: ठोस अवस्था भौतिकी और भौतिक गुण · और देखें »

मिश्रातु

इस्पात एक मिश्रधातु है दो या अधिक धात्विक तत्वों के आंशिक या पूर्ण ठोस-विलयन को मिश्रातु या मिश्र धातु (Alloy) कहते हैं। इस्पात एक मिश्र धातु है। प्रायः मिश्र धातुओं के गुण उस मिश्रधातु को बनाने वाले संघटकों के गुणों से भिन्न होते हैं। इस्पात, लोहे की अपेक्षा अधिक मजबूत होता है। काँसा, पीतल, टाँका (सोल्डर) आदि मिश्रातु हैं। .

नई!!: ठोस अवस्था भौतिकी और मिश्रातु · और देखें »

मुक्त इलेक्ट्रॉन मॉडल

त्रिबीमीय अवकाश में, फर्मिऑन गैस के स्टेट्स का घनत्व कणों की गतिज ऊर्जा के वर्गमूल के समानुपाती होता है। ठोस अवस्था भौतिकी में मुक्त इलेक्ट्रान माडल (free electron model) धात्विक ठोसों के क्रिस्टल संरचना में संयोजक इलेक्ट्रानों के व्यवहार को अभिव्यक्त करने वाला सरल मॉडल है। इसका विकास मुख्य रूप से अर्नाल्ड समरफिल्ड ने किया था। अत्यन्त सरल होने के बावजूद भी यह मॉडल अनेकों प्रायोगिक परिघटनाओं की व्याख्या करने में सक्षम है। श्रेणी:इलेक्ट्रान.

नई!!: ठोस अवस्था भौतिकी और मुक्त इलेक्ट्रॉन मॉडल · और देखें »

मृत्तिकाशिल्प

चीनी पोर्सलीन का पात्र (किंग वंश, १८वीं शती) खपरैल मेक्सिको से प्राप्त योद्धा की मृतिकाशिल्प (तीसरी शती ईसापूर्व से चौथी शती ई के बीच) मृत्तिकाशिल्प 'सिरैमिक्स' (ceramics) का हिन्दी पर्याय है। ग्रीक भाषा के 'कैरेमिक' का अर्थ है - 'कुंभकार का शिल्प'। अमरीका में मृद भांड, दुर्गलनीय पदार्थ, कांच, सीमेंट, एनैमल तथा चूना उद्योग मृत्तिकाशिल्प के अंतर्गत हैं। गढ़ने तथा सुखाने के बाद अग्नि द्वारा प्रबलित मिट्टी या अन्य सुधट्य पदार्थ की निर्मिति को यूरोप में 'मृत्तिका शिल्प उत्पादन' कहते हैं। मृत्पदार्थो के निर्माण, उनके तकनीकी लक्षण तथा निर्माण में प्रयुक्त कच्चे माल से संबंधित उद्योग को हम मृत्तिकाशिल्प या सिरैमिक्स कहते हैं। मिट्टी के उत्पाद अनेक क्षेत्रों में, जैसे भवन निर्माण तथा सजावट, प्रयोगशाला, अस्पताल, विद्युत उत्पादन और वितरण, जलनिकास मलनिर्यास, पाकशाला, ऑटोमोबाइल तथा वायुयान आदि में काम आते हैं। .

नई!!: ठोस अवस्था भौतिकी और मृत्तिकाशिल्प · और देखें »

मेसर

एक हाइड्रोजन रेडियो आवृति निरावेशन, हाइड्रोजन मेसर में प्रथम तन्तु (विवरण के लिए नीचे देखें) मेसर एक ऐसा यन्त्र है जो उद्दीप्त उत्सर्जन द्वारा प्रवर्धन के माध्यम से सम्बंद्ध् विद्युतचुम्बकीय तरंगे उत्पन्न करता है। ऐतिहासिक रूप से यह परिवर्णी (संक्षिप्त) नाम मेसर (MESAR) से व्युत्पन्न होता है जिसका अर्थ विकिरण के उद्दीप्त उत्सर्जन द्वारा सूक्ष्मतरंग प्रवर्धन (Microwave Amplification by Stimulated Emission of Radiation) है। .

नई!!: ठोस अवस्था भौतिकी और मेसर · और देखें »

रबड़

रबर के वृछ का चित्रांकन रबड़ के वृक्ष भूमध्य रेखीय सदाबहार वनों में पाए जाते हैं, इसके दूध, जिसे लेटेक्स कहते हैं से रबड़ तैयार किया जाता हैं। सबसे पहले यह अमेजन बेसिन में जंगली रूप में उगता था, वहीं से यह इंगलैण्ड निवासियों द्वारा दक्षिणी-पूर्वी एशिया में ले जाया गया। पहले इसका प्रयोग पेन्सिल के निशान मिटाने के लिये किया जाता था। आज यह विश्व की महत्वपूर्ण व्यावसायिक फसलों में से है। इसका प्रयोग मोटर के ट्यूब, टायर, वाटर प्रूफ कपड़े, जूते तथा विभिन्न प्रकार के दैनिक उपयोग की वस्तुओं में होता है। थाईलैंड, इण्डोनेशिया, मलेशिया, भारत, चीन तथा श्रीलंका प्रमुख उत्पादक देश है। भारत का विश्व उत्पादन में चौथा स्थान है परन्तु घरेलु खपत अधिक होने के कारण यह रबर का आयात करता है। रबर का आदिमस्थान अमरीका है। अमरीका की एक आदि जाति 'माया' थी, जिसमें रबर के गेंद प्रचलित थे। कोलंबस ने सन्‌ 1493 ई. में वहाँ के आदिवासियों को रबर के बने गेदों से खेलते देखा था। ऐसा मालूम होता है कि दक्षिण पूर्व एशिया के आदिवासी भी रबर से परिचित थे और उससे टोकरियाँ, घड़े और इसी प्रकार की व्यवहार की अन्य चीजें तैयार करते थे। धीरे-धीरे रबर का प्रचार सारे संसार में हो गया और आज रबर आधुनिक सभ्यता का एक महत्वपूर्ण प्रतीक माना जाता है। रबर के बने सामानों की संख्या और उपयोगिता आज इतनी बढ़ गई है कि उसके अभाव में काम चलाना असंभव समझा जाता है। रबर का उपयोग शांति और युद्धकाल में, घरेलू और औद्योगिक कार्मों में समान रूप से होता है। संसार के समस्त रबर के उत्पादन का प्राय: 78 प्रतिशत गाड़ियों के टायरों और ट्यूबों के बनाने में तथा शेष जूतों के तले और एड़ियाँ, बिजली के तार, खिलौने, बरसाती कपड़े, चादरें, खेल के सामान, बोतलों और बरफ के थैलों, सरजरी के सामान इत्यादि, हजारों चीजों के बनाने में लगता है। अब तो रबर की सड़के भी बनने लगी हैं, जो पर्याप्त टिकाऊ सिद्ध हुई है। रबर का व्यवसाय आज दिनोंदिन बढ़ रहा है। .

नई!!: ठोस अवस्था भौतिकी और रबड़ · और देखें »

सांख्यिकीय यांत्रिकी

सांख्यिकीय यांत्रिकी (Statistical mechanics) गणितीय भौतिकी की वह शाखा है जिसमें प्रायिकता सिद्धान्त का उपयोग करते हुए यांत्रिक निकाय के माध्य-व्यवहार का अध्ययन किया जाता है। श्रेणी:भौतिकी *.

नई!!: ठोस अवस्था भौतिकी और सांख्यिकीय यांत्रिकी · और देखें »

संघनित द्रव्य भौतिकी

संघनित द्रव्य भौतिकी (Condensed matter physics) भौतिकी की वह शाखा है जो द्रव्य की संघनित प्रावस्थाओं (condensed phases) के भौतिक गुणों का अध्ययन करती है। श्रेणी:भौतिकी श्रेणी:संघनित द्रव्य भौतिकी.

नई!!: ठोस अवस्था भौतिकी और संघनित द्रव्य भौतिकी · और देखें »

जस्ता

जस्ता या ज़िन्क एक रासायनिक तत्व है जो संक्रमण धातु समूह का एक सदस्य है। रासायनिक दृष्टि से इसके गुण मैगनीसियम से मिलते-जुलते हैं। मनुष्य जस्ते का प्रयोग प्राचीनकाल से करते आये हैं। कांसा, जो ताम्बे व जस्ते की मिश्र धातु है, १०वीं सदी ईसापूर्व से इस्तेमाल होने के चिन्ह छोड़ गया है। ९वीं शताब्दी ईपू से राजस्थान में शुद्ध जस्ता बनाये जाने के चिन्ह मिलते हैं और ६ठीं शताब्दी ईपू की एक जस्ते की खान भी राजस्थान में मिली है। लोहे पर जस्ता चढ़ाने से लोहा ज़ंग खाने से बचा रहता है और जस्ते का प्रयोग बैट्रियों में भी बहुत होता है। .

नई!!: ठोस अवस्था भौतिकी और जस्ता · और देखें »

घनत्व

भौतिकी में किसी पदार्थ के इकाई आयतन में निहित द्रव्यमान को उस पदार्थ का घनत्व (डेंसिटी) कहते हैं। इसे ρ या d से निरूपित करते हैं। अर्थात अतः घनत्व किसी पदार्थ के घनेपन की माप है। यह इंगित करता है कि कोई पदार्थ कितनी अच्छी तरह सजाया हुआ है। इसकी इकाई किग्रा प्रति घन मीटर होती है। .

नई!!: ठोस अवस्था भौतिकी और घनत्व · और देखें »

विसरण

तीन अलग-अलग समयों पर किसी गैस का विसरण: (१) विसरण के ठीक पहले (२) विसरण के थोडी देर बाद (३) विसरण आरम्भ होने के बहुत देर बाद विसरण के पहले और बाद में दो या दो से अधिक पादार्थों का स्वतः एक दूसरे से मिलकर समांग मिश्रण बनाने की क्रिया को विसरण (डिफ्यूजन) कहते हैं। सजीव कोशिकाओं में अमीनो अम्ल के संवहन में विसरण की मुख्य भूमिका है। .

नई!!: ठोस अवस्था भौतिकी और विसरण · और देखें »

विकृति

विकृति ' यह वस्तु या पदार्थ मे होने वाले विरूपण (deformation) को प्रदर्शित करती हैं| बाह्य बल(external force) के कारण वस्तु की लंबाई मे होने वाली परिवर्तन एवं उसकी प्रारंभिक लंबाई के अनुपात को विकृति (strain) कहते हैं | अतः नोट:- यह दो लंबाई का अनुपात हैं अर्थात इसकी कोई इकाई नहीं होती हैं | ' .

नई!!: ठोस अवस्था भौतिकी और विकृति · और देखें »

गंधक

हल्के पीले रंग के गंधक के क्रिस्टल गंधक (Sulfur) एक रासायनिक अधातुक तत्त्व है। .

नई!!: ठोस अवस्था भौतिकी और गंधक · और देखें »

इस्पात

इस्पात (Steel), लोहा, कार्बन तथा कुछ अन्य तत्वों का मिश्रातु है। इसकी तन्य शक्ति (tensile strength) अधिक होती है जबकि प्रति टन मूल्य कम होने के कारण यह भवनों, अधोसंरचना, औजार, जलयान, वाहन, और मशीनों के निर्माण में प्रयुक्त होता है। 'इस्पात' शब्द इतने विविध प्रकार के परस्पर अत्यधिक भिन्न गुणोंवाले पदार्थो के लिए प्रयुक्त होता है कि इस शब्द की ठीक-ठीक परिभाषा करना वस्तुत: असंभव है। परंतु व्यवहारत: इस्पात से लोहे तथा कार्बन (कार्बन) की मिश्र धातु ही समझी जाती है (दूसरे तत्व भी साथ में चाहे हों अथवा न हों)। इसमें कार्बन की मात्रा साधारणतया 0.002% से 2.14% तक होती है। किसी अन्य तत्व की अपेक्षा कार्बन, लोहे के गुणों को अधिक प्रभावित करता है; इससे अद्वितीय विस्तार में विभिन्न गुण प्राप्त होते हैं। वेसे तो कई अन्य साधारण तत्व भी मिलाए जाने पर लोहे तथा इस्पात के गुणों को बहुत बदल देते हैं, परंतु इनमें कार्बन ही प्रधान मिश्रधातुकारी तत्व है। यह लोहे की कठोरता तथा पुष्टता समानुपातिक मात्रा में बढ़ाता है, विशेषकर उचित उष्मा उपचार के उपरांत। इस्पात एक मिश्रण है जिसमें अधिकांश हिस्सा लोहा का होता है। इस्पात में 0.2 प्रतिशत से 2.14 प्रतिशत के बीच कार्बन होता है। लोहा के साथ कार्बन सबसे किफायत मिश्रक होता है, लेकिन जरूरत के अनुसार, इसमें मैंगनीज, क्रोमियम, वैंनेडियम और टंग्सटन भी मिलाए जाते हैं। कार्बन और दूसरे पदार्थ मिश्र-धातु को कठोरता प्रदान करते हैं। लौहे के साथ, उचित मात्रा में मिश्रक मिलाकर लोहे को आवश्यक कठोरता, तन्यता और सुघट्यता प्रदान किया जाता है। लौहे में जितना ज्यादा कार्बन मिलाते हैं इस्पात उतना ही कठोर बनता जाता है, कठोरता बढ़ने के साथ ही उसकी भंगुरता भी बढ़ती जाती है। 1149 डिग्री सेल्सियस पर लौहे में कार्बन की अधिकतम घुल्यता 2.14 प्रतिशत है। कम तापमान पर अगर लौहे में ज्यादा मात्रा में कार्बन हो तो इससे सिमेंटाइट का निर्माण होगा। लौहे में अगर इससे ज्यादा कार्बन हो तो यह कास्ट आयरन कहलाता है, क्योंकि इसका गलनाक कम हो जाता है। इस्पात, कास्ट आयरन से इसलिए भी अलग होता है क्योंकि इसमें दूसरे तत्वों की मात्रा अत्यंत कम होती है यानी 1 से तीन प्रतिशत के करीब.

नई!!: ठोस अवस्था भौतिकी और इस्पात · और देखें »

कांच

स्वच्छ पारदर्शी कांच का बना प्रकाश बल्ब काच, काँच या कांच (glass) एक अक्रिस्टलीय ठोस पदार्थ है। कांच आमतौर भंगुर और अक्सर प्रकाशीय रूप से पारदर्शी होते हैं। काच अथव शीशा अकार्बनिक पदार्थों से बना हुआ वह पारदर्शक अथवा अपारदर्शक पदार्थ है जिससे शीशी बोतल आदि बनती हैं। काच का आविष्कार संसार के लिए बहुत बड़ी घटना थी और आज की वैज्ञानिक उन्नति में काच का बहुत अधिक महत्व है। किन्तु विज्ञान की दृष्टि से 'कांच' की परिभाषा बहुत व्यापक है। इस दृष्टि से उन सभी ठोसों को कांच कहते हैं जो द्रव अवस्था से ठण्डा होकर ठोस अवस्था में आने पर क्रिस्टलीय संरचना नहीं प्राप्त करते। सबसे आम काच सोडा-लाइम काच है जो शताब्दियों से खिड़कियाँ और गिलास आदि बनाने के काम में आ रहा है। सोडा-लाइम कांच में लगभग 75% सिलिका (SiO2), सोडियम आक्साइड (Na2O) और चूना (CaO) और अनेकों अन्य चीजें कम मात्रा में मिली होती हैं। काँच यानी SiO2 जो कि रेत का अभिन्न अंग है। रेत और कुछ अन्य सामग्री को एक भट्टी में लगभग 1500 डिग्री सैल्सियस पर पिघलाया जाता है और फिर इस पिघले काँच को उन खाँचों में बूंद-बूंद करके उंडेला जाता है जिससे मनचाही चीज़ बनाई जा सके। मान लीजिए, बोतल बनाई जा रही है तो खाँचे में पिघला काँच डालने के बाद बोतल की सतह पर और काम किया जाता है और उसे फिर एक भट्टी से गुज़ारा जाता है। .

नई!!: ठोस अवस्था भौतिकी और कांच · और देखें »

अतिचालकता

सामान्य चालकों तथा अतिचालकों में ताप के साथ प्रतिरोधकता का परिवर्तन जब किसी मैटेरियल को 0°k तक ठंडा किया जाता है तो उसका प्रतिरोध पूर्णतः शून्य प्रतिरोधकता प्रदर्शित करते हैं। उनके इस गुण को अतिचालकता (superconductivity) कहते हैं। शून्य प्रतिरोधकता के अलावा अतिचालकता की दशा में पदार्थ के भीतर चुम्बकीय क्षेत्र भी शून्य हो जाता है जिसे मेसनर प्रभाव (Meissner effect) के नाम से जाना जाता है। सुविदित है कि धात्विक चालकों की प्रतिरोधकता उनका ताप घटाने पर घटती जाती है। किन्तु सामान्य चालकों जैसे ताँबा और चाँदी आदि में, अशुद्धियों और दूसरे अपूर्णताओं (defects) के कारण एक सीमा के बाद प्रतिरोधकता में कमी नहीं होती। यहाँ तक कि ताँबा (कॉपर) परम शून्य ताप पर भी अशून्य प्रतिरोधकता प्रदर्शित करता है। इसके विपरीत, अतिचालक पदार्थ का ताप क्रान्तिक ताप से नीचे ले जाने पर, इसकी प्रतिरोधकता तेजी से शून्य हो जाती है। अतिचालक तार से बने हुए किसी बंद परिपथ की विद्युत धारा किसी विद्युत स्रोत के बिना सदा के लिए स्थिर रह सकती है। अतिचालकता एक प्रमात्रा-यांत्रिक दृग्विषय (quantum mechanical phenomenon.) है। अतिचालक पदार्थ चुंबकीय परिलक्षण का भी प्रभाव प्रदर्शित करते हैं। इन सबका ताप-वैद्युत-बल शून्य होता है और टामसन-गुणांक बराबर होता है। संक्रमण ताप पर इनकी विशिष्ट उष्मा में भी अकस्मात् परिवर्तन हो जाता है। यह विशेष उल्लेखनीय है कि जिन परमाणुओं में बाह्य इलेक्ट्रॉनों की संख्या 5 अथवा 7 है उनमें संक्रमण ताप उच्चतम होता है और अतिचालकता का गुण भी उत्कृष्ट होता है। .

नई!!: ठोस अवस्था भौतिकी और अतिचालकता · और देखें »

अनुनाद

जैसे-जैसे आवृत्ति, अनुनाद आवृत्ति के पास पहुँचती है, आयाम बढता जाता है भौतिकी में बहुत से तंत्रों (सिस्टम्स्) की ऐसी प्रवृत्ति होती है कि वे कुछ आवृत्तियों पर बहुत अधिक आयाम के साथ दोलन करते हैं। इस स्थिति को अनुनाद (रिजोनेन्स) कहते हैं। जिस आवृत्ति पर सबसे अधिक आयाम वाले दोलन की प्रवृत्ति पायी जाती है, उस आवृत्ति को अनुनाद आवृत्ति (रेसोनेन्स फ्रिक्वेन्सी) कहते हैं। सभी प्रकार के कम्पनों या तरंगों के साथ अनुनाद की घटना जुड़ी हुई है। अर्थात यांत्रिक, ध्वनि, विद्युतचुम्बकीय अथवा क्वांटम तरंग फलनों के साथ अनुनाद हो सकती है। कोई छोटे आयाम का भी आवर्ती बल, जो अनुनाद आवृत्ति वाला या उसके लगभग बराबर आवृत्ति वाला हो, उस तंत्र में बहुत अधिक आयाम के दोलन पैदा कर सकता है। अनुनादी तंत्रों के बहुत से उपयोग हैं। इनका उपयोग किसी वांछित आवृत्ति पर कम्पन (दोलन) पैदा करने के लिया किया जा सकता है; अथवा किसी जटिल कम्पन (जिसमें बहुत सी आवृत्तियों का मिश्रण हो; जैसे रेडियो या टीवी सिगनल) में से किसी चुनी हुई आवृत्ति को छाटने (फिल्टर करने) के लिये किया जा सकता है।; अनुनाद होने के लिये तीन चींजें जरूरी हैं- १) एक वस्तु या तन्त्र - जिसकी कोई प्राकृतिक आवृत्ति हो; २) वाहक या कारक बल (ड्राइविंग फोर्स) - जिसकी आवृत्ति, तन्त्र की प्राकृतिक आवृत्ति के समान हो; ३) इस तंत्र में उर्जा नष्ट करने वाला अवयव कम से कम हो (कम डैम्पिंग हो)। (घर्षण, प्रतिरोध (रेजिस्टैन्स), श्यानता (विस्कासिटी) आदि किसी तन्त्र में उर्जा ह्रास के लिये जिम्मेदार होते हैं।) .

नई!!: ठोस अवस्था भौतिकी और अनुनाद · और देखें »

उष्मागतिकी

भौतिकी में उष्मागतिकी (उष्मा+गतिकी .

नई!!: ठोस अवस्था भौतिकी और उष्मागतिकी · और देखें »

यहां पुनर्निर्देश करता है:

ठोस अवस्था सिद्धान्त

निवर्तमानआने वाली
अरे! अब हम फेसबुक पर हैं! »