लोगो
यूनियनपीडिया
संचार
Google Play पर पाएं
नई! अपने एंड्रॉयड डिवाइस पर डाउनलोड यूनियनपीडिया!
मुक्त
ब्राउज़र की तुलना में तेजी से पहुँच!
 

कलिल

सूची कलिल

पायसीकृत द्रव कलिल है जिसमे मक्खन की गोलिकायें एक जल-आधारित तरल मे परिक्षेपित रहती हैं। कलिल या कोलाइड एक रसायनिक मिश्रण होता है जिसमे एक वस्तु दूसरी वस्तु मे समान रूप से परिक्षेपित (dispersed) होती है। परिक्षेपित वस्तु के कण मिश्रण मे केवल निलम्बित रहते है ना कि एक विलयन की तरह (जिसमे यह पूरी तरह घुल जाते हैं)। ऐसा इसलिए होता है क्योंकि कलिल मे कणों का आकार विलयन मे उपस्थित कणों के आकार से बड़ा होता है - यह कण इतने छोटे होते हैं कि मिश्रण मे पूरी तरह परिक्षेपित हो कर एक समरूप मिश्रण तैयार करें, लेकिन इतने बडे़ भी नहीं होते हैं कि प्रकाश को प्रकीर्णित करें और ना घुलें। इस परिक्षेपण के चलते कुछ कलिल विलयन जैसे दिखते हैं। किसी कलिल प्रणाली की दो पृथक प्रावस्थायें होती हैं: पहली परिक्षेपण प्रावस्था (या आंतरिक प्रावस्था) और दूसरी सतत प्रावस्था (या परिक्षेपण माध्यम)। एक कलिल प्रणाली ठोस, द्रव या गैसीय हो सकती है। नीचे की तालिका मे एक समरूप और असमरूप मिश्रण मे कलिल के कणों का व्यास का तुलनात्मक विश्लेषण है।: इसलिए, कलिलीय निलम्बन, समरूप और असमरूप मिश्रणों के मध्यवर्ती होते हैं। .

13 संबंधों: टिण्डल प्रभाव, ठोस, द्रव, परासरण दाब, पायस (इमल्शन), मक्खन, रक्त, रेशा, साबुन, सूक्ष्मदर्शी, विलयन, गैस, कांच

टिण्डल प्रभाव

आटे के गिलास का रंग नीला दिखता है। इसका कारण यह है कि देखने वाले की आँख तक केवल प्रकीर्णित प्रकाश ही पहुँचता है। तथा नीला रंग आटे के कणों द्वारा लाल रंग की अपेक्षा अधिक प्रकीर्णित किया जाता है। कोहरे को चीरकर आती हुई प्रकाश किरणें। वास्तव में जिन्हें हम 'किरणें' समझते हैं वे पानी के कण हैं जो टिण्डल प्रभाव के कारण दिखाई पड़ते हैं। किसी कोलायडी विलयन में उपस्थित कणों द्वारा प्रकाश का प्रकीर्णन होने की परिघटना टिण्डल प्रभाव (Tyndall effect) कहलाती है। यह प्रभाव छोटे-छोटे निलम्बित कणों वाले विलियन द्वारा भी देखा जा सकता है। टिण्डल प्रभाव को 'टिंडल प्रकीर्णन' (Tyndall scattering) भी कहा जाता है। इस प्रभाव का नाम १९वीं शताब्दी के भौतिकशास्त्री जॉन टिण्डल के नाम पर पड़ा है। टिण्डल प्रकीर्णन, इस दृष्टि से रैले प्रकीर्णन (Rayleigh scattering), जैसा ही है कि प्रकीर्ण प्रकाश की तीव्रता प्रकाश के आवृत्ति के चतुर्थ घात के समानुपाती होता है। नीला प्रकाश, लाल प्रकाश की तुलना में बहुत अधिक प्रकीर्ण होता है क्योंकि नीले प्रकाश की आवृत्ति अधिक होती है। .

नई!!: कलिल और टिण्डल प्रभाव · और देखें »

ठोस

ठोस (solid) पदार्थ की एक अवस्था है, जिसकी पहचान पदार्थ की संरचनात्मक दृढ़ता और विकृति (आकार, आयतन और स्वरूप में परिवर्तन) के प्रति प्रत्यक्ष अवरोध के गुण के आधार पर की जाती है। ठोस पदार्थों में उच्च यंग मापांक और अपरूपता मापांक होते है। इसके विपरीत, ज्यादातर तरल पदार्थ निम्न अपरूपता मापांक वाले होते हैं और श्यानता का प्रदर्शन करते हैं। भौतिक विज्ञान की जिस शाखा में ठोस का अध्ययन करते हैं, उसे ठोस-अवस्था भौतिकी कहते हैं। पदार्थ विज्ञान में ठोस पदार्थों के भौतिक और रासायनिक गुणों और उनके अनुप्रयोग का अध्ययन करते हैं। ठोस-अवस्था रसायन में पदार्थों के संश्लेषण, उनकी पहचान और रासायनिक संघटन का अध्ययन किया जाता है। .

नई!!: कलिल और ठोस · और देखें »

द्रव

द्रव का कोई निश्चित आकार नहीं होता। द्रव जिस पात्र में रखा जाता है उसी का आकार ग्रहण कर लेता है। प्रकृति में सभी रासायनिक पदार्थ साधारणत: ठोस, द्रव और गैस तथा प्लाज्मा - इन चार अवस्थाओं में पाए जाते हैं। द्रव और गैस प्रवाहित हो सकते हैं, किंतु ठोस प्रवाहित नहीं होता। लचीले ठोस पदार्थों में आयतन अथवा आकार को विकृत करने से प्रतिबल उत्पन्न होता है। अल्प विकृतियों के लिए विकृति और प्रतिबल परस्पर समानुपाती होते हैं। इस गुण के कारण लचीले ठोस एक निश्चित मान तक के बाहरी बलों को सँभालने की क्षमता रखते हैं। प्रवाह का गुण होने के कारण द्रवों और गैसों को तरल पदार्थ (fluid) कहा जाता है। ये पदार्थ कर्तन (shear) बलों को सँभालने में अक्षम होते हैं और गुरुत्वाकर्षण के प्रभाव के कारण प्रवाहित होकर जिस बरतन में रखे रहते हैं, उसी का आकार धारण कर लेते हैं। ठोस और तरल का यांत्रिक भेद बहुत स्पष्ट नहीं है। बहुत से पदार्थ, विशेषत: उच्च कोटि के बहुलक (polymer) के यांत्रिक गुण, श्यान तरल (viscous fluid) और लचीले ठोस के गुणों के मध्यवर्ती होते हैं। प्रत्येक पदार्थ के लिए एक ऐसा क्रांतिक ताप (critical temperature) पाया जाता है, जिससे अधिक होने पर पदार्थ केवल तरल अवस्था में रह सकता है। क्रांतिक ताप पर पदार्थ की द्रव और गैस अवस्था में विशेष अंतर नहीं रह जाता। इससे नीचे के प्रत्येक ताप पर द्रव के साथ उसका कुछ वाष्प भी उपस्थित रहता है और इस वाष्प का कुछ निश्चित दबाव भी होता है। इस दबाव को वाष्प दबाव कहते हैं। प्रत्येक ताप पर वाष्प दबाव का अधिकतम मान निश्चित होता है। इस अधिकतम दबाव को संपृक्त-वाष्प-दबाव के बराबर अथवा उससे अधिक हो, तो द्रव स्थायी रहता है। यदि ऊपरी दबाव द्रव के संपृक्तवाष्प-दबाव से कम हो, तो द्रव अस्थायी होता है। संपृक्त-वाष्प-दबाव ताप के बढ़ने से बढ़ता है। जिस ताप पर द्रव का संपृक्त-वाष्प-दबाव बाहरी वातावरण के दबाव के बराबर हो जाता है, उसपर द्रव बहुत तेजी से वाष्पित होने लगता है। इस ताप को द्रव का क्वथनांक (boiling point) कहते हैं। यदि बाहरी दबाव सर्वथा स्थायी हो तो क्वथनांक से नीचे द्रव स्थायी रहता है। क्वथनांक पर पहुँचने पर यह खौलने लगता है। इस दशा में यह ताप का शोषण करके द्रव अवस्था से गैस अवस्था में परिवर्तित होने लगता है। क्वथनांक पर द्रव के इकाई द्रव्यमान को द्रव से पूर्णत: गैस में परिवर्तित करने के लिए जितने कैलोरी ऊष्मा की आवश्यकता होती है, उसे द्रव के वाष्पीभवन की गुप्त ऊष्मा कहते हैं। विभिन्न द्रव पदार्थों के लिए इसका मान भिन्न होता है। एक नियत दबाव पर ठोस और द्रव दोनों रूप साथ साथ एक निश्चित ताप पर पाए जा सकते हैं। यह ताप द्रव का हिमबिंदु या ठोस का द्रवणांक कहलाता है। द्रवणांक पर पदार्थ के इकाई द्रव्यमान को ठोस से पूर्णत: द्रव में परिवर्तित करने में जितनी ऊष्मा की आवश्यकता होती है, उसे ठोस के गलन की गुप्त ऊष्मा कहते हैं। अक्रिस्टली पदार्थों के लिए कोई नियत गलनांक नहीं पाया जाता। वे गरम करने पर धीरे धीरे मुलायम होते जाते हैं और फिर द्रव अवस्था में आ जाते हैं। काँच तथा काँच जैसे अन्य पदार्थ इसी प्रकार का व्यवहार करते हैं। एक नियत ताप और नियत दबाव पर प्रत्येक द्रव्य की तीनों अवस्थाएँ एक साथ विद्यमान रह सकती हैं। दबाव और ताप के बीच खीचें गए आरेख (diagram) में ये नियत ताप और दबाव एक बिंदु द्वारा प्रदर्शित किए जाते हैं। इस बिंदु को द्रव का त्रिक् बिंदु (triple point) कहते हैं। त्रिक् विंदु की अपेक्षा निम्न दाबों पर द्रव अस्थायी रहता है। यदि किसी ठोस को त्रिक् विंदु की अपेक्षा निम्न दबाव पर रखकर गरम किया जाए तो वह बिना द्रव बने ही वाष्प में परिवर्तित हो जाता है, अर्थात् ऊर्ध्वपातित (sublime) हो जाता है। द्रव के मुक्त तल में, जो उस द्रव के वाष्प या सामान्य वायु के संपर्क में रहता है, एक विशेष गुण पाया जाता है, जिसके कारण यह तल तनी हुई महीन झिल्ली जैसा व्यवहार करता है। इस गुण को पृष्ठ तनाव (surface tension) कहते हैं। पृष्ठ तनाव के कारण द्रव के पृष्ठ का क्षेत्रफल यथासंभव न्यूनतम होता है। किसी दिए आयतन के लिए सबसे कम क्षेत्रफल एक गोले का होता है। अत: ऐसी स्थितियों में जब कि बाहरी बल नगण्य माने जा सकते हों द्रव की बूँदे गोल होती हैं। जब कोई द्रव किसी ठोस, या अन्य किसी अमिश्रय द्रव, के संपर्क में आता है तो भी संपर्क तल पर तनाव उत्पन्न होता है। साधारणत: कोई भी पदार्थ केवल एक ही प्रकार के द्रव रूप में प्राप्त होता है, किंतु इसके कुछ अपवाद भी मिलते हैं, जैसे हीलियम गैस को द्रवित करके दो प्रकार के हीलियम द्रव प्राप्त किए जा सकते हैं। उसी प्रकार पैरा-ऐज़ॉक्सी-ऐनिसोल (Para-azoxy-anisole) प्रकाशत: विषमदैशिक (anisotropic) द्रव के रूप में, क्रिस्टलीय अवस्था में तथा सामान्य द्रव के रूप में भी प्राप्त हो सकता है। .

नई!!: कलिल और द्रव · और देखें »

परासरण दाब

परासरण को यदि रोकना चाहें तो उसे रोकने के लिए उसके विपरीत एक वाह्य दाब लगाना पड़ेगा। परासरण को रोकने के लिये लिये आवश्यक वाह्य दाब की मात्रा को परासरण दाब (ऑस्मोटिक प्रेशर) कहते हैं। किसी विलयन को एक अर्धपारगम्य झिल्ली द्वारा आसुत जल से अलग रखा जाय तो यहाँ जितना अधिकतम दाब उत्पन्न हो सकता है उसे शक्य परासरण दाब (Potential osmotic pressure) कहते हैं। परासरण की परिघटना जीवविज्ञान में अति महत्वपूर्ण है क्योंकि कोशिका भित्ति (सेल मेम्ब्रेन) भी अर्धपारगम्य होती है। U-आकार की नली द्वारा परासरण दाब का प्रदर्शन (बीच में अर्धपारगम्य झिल्ली लगी है।) श्रेणी:झिल्ली जीवविज्ञान श्रेणी:कोशिकाविज्ञान श्रेणी:पदार्थ की मात्रा.

नई!!: कलिल और परासरण दाब · और देखें »

पायस (इमल्शन)

A. दो अमिश्रणीय तरल जिनका अभी पायसन नहीं बना है; B. प्रावस्था II, प्रावस्था I मे परिक्षेपित होने से बना पायसन; C. एक अस्थिर पायसन समय के साथ अलग होता है; D. पृष्ठसक्रियकारक (सरफैक्टेंट) (बैंगनी रेखा) खुद को प्रावस्था II और प्रावस्था I के मध्य लाकर पायसन को स्थायित्व प्रदान करता है। पायस (emulsion) दो या इससे अधिक अमिश्रणीय तरल पदार्थों से बना एक मिश्रण है। एक तरल (परिक्षेपण प्रावस्था) अन्य तरल (सतत प्रावस्था) में परिक्षेपित (फैलता) होता है। कई पायसन तेल/पानी के पायसन होते हैं, जिनमे आहार वसा प्रतिदिन प्रयोग मे आने वाले तेल का एक सामान्य उदाहरण है। पायसन के उदाहरण में शामिल हैं, मक्खन और मार्जरीन, दूध और क्रीम, फोटो फिल्म का प्रकाश संवेदी पक्ष, मैग्मा और धातु काटने मे काम आने वाले तरल। मक्खन और मार्जरीन, मे वसा पानी की बूंदों को चारो ओर से ढक लेता है (एक पानी में तेल पायसन)। दूध और क्रीम, मे पानी, वसा की बूंदों के चारों ओर रहता है (एक तेल में पानी पायसन)। मैग्मा के कुछ प्रकार में, तरल की गोलिकायें NiFe तरल सिलिकेट की एक सतत प्रावस्था के भीतर परिक्षेपित हो सकती हैं। पायसीकरण वह प्रक्रिया है जिसके द्वारा पायसन का निर्माण होता है। पायसन शब्द को तेल क्षेत्र में भी इस्तेमाल किया जाता है जैसे अपरिशोधित कच्चा तेल, तेल और पानी का मिश्रण होता है। श्रेणी:रासायनिक मिश्रण श्रेणी:कलिल श्रेणी:नरम पदार्थ.

नई!!: कलिल और पायस (इमल्शन) · और देखें »

मक्खन

मक्खन एक दुग्ध-उत्पाद है जिसे दही, ताजा या खमीरीकृत क्रीम या दूध को मथ कर प्राप्त किया जाता है। हिन्दी में इसे दधिज या माखन भी कहा जाता है। मक्खन के मुख्य संघटक वसा, पानी और दूध प्रोटीन होते हैं। इसे आमतौर पर रोटी, डबलरोटी, परांठों आदि पर लगा कर खाया जाता है, साथ ही इसे खाना पकाने के एक माध्यम के रूप मे भी प्रयोग किया जाता है। इसका प्रयोग सॉस बनाने और तलने के लिए किया जाता है। .

नई!!: कलिल और मक्खन · और देखें »

रक्त

मानव शरीर में लहू का संचरण लाल - शुद्ध लहू नीला - अशु्द्ध लहू लहू या रक्त या खून एक शारीरिक तरल (द्रव) है जो लहू वाहिनियों के अन्दर विभिन्न अंगों में लगातार बहता रहता है। रक्त वाहिनियों में प्रवाहित होने वाला यह गाढ़ा, कुछ चिपचिपा, लाल रंग का द्रव्य, एक जीवित ऊतक है। यह प्लाज़मा और रक्त कणों से मिल कर बनता है। प्लाज़मा वह निर्जीव तरल माध्यम है जिसमें रक्त कण तैरते रहते हैं। प्लाज़मा के सहारे ही ये कण सारे शरीर में पहुंच पाते हैं और वह प्लाज़मा ही है जो आंतों से शोषित पोषक तत्वों को शरीर के विभिन्न भागों तक पहुंचाता है और पाचन क्रिया के बाद बने हानिकारक पदार्थों को उत्सर्जी अंगो तक ले जा कर उन्हें फिर साफ़ होने का मौका देता है। रक्तकण तीन प्रकार के होते हैं, लाल रक्त कणिका, श्वेत रक्त कणिका और प्लैटलैट्स। लाल रक्त कणिका श्वसन अंगों से आक्सीजन ले कर सारे शरीर में पहुंचाने का और कार्बन डाईआक्साईड को शरीर से श्वसन अंगों तक ले जाने का काम करता है। इनकी कमी से रक्ताल्पता (अनिमिया) का रोग हो जाता है। श्वैत रक्त कणिका हानीकारक तत्वों तथा बिमारी पैदा करने वाले जिवाणुओं से शरीर की रक्षा करते हैं। प्लेटलेट्स रक्त वाहिनियों की सुरक्षा तथा खून बनाने में सहायक होते हैं। मनुष्य-शरीर में करीब पाँच लिटर लहू विद्यमान रहता है। लाल रक्त कणिका की आयु कुछ दिनों से लेकर १२० दिनों तक की होती है। इसके बाद इसकी कोशिकाएं तिल्ली (Phagocytosis) में टूटती रहती हैं। परन्तु इसके साथ-साथ अस्थि मज्जा (बोन मैरो) में इसका उत्पादन भी होता रहता है (In 7 steps)। यह बनने और टूटने की क्रिया एक निश्चित अनुपात में होती रहती है, जिससे शरीर में खून की कमी नहीं हो पाती। मनुष्यों में लहू ही सबसे आसानी से प्रत्यारोपित किया जा सकता है। एटीजंस से लहू को विभिन्न वर्गों में बांटा गया है और रक्तदान करते समय इसी का ध्यान रखा जाता है। महत्वपूर्ण एटीजंस को दो भागों में बांटा गया है। पहला ए, बी, ओ तथा दुसरा आर-एच व एच-आर। जिन लोगों का रक्त जिस एटीजंस वाला होता है उसे उसी एटीजंस वाला रक्त देते हैं। जिन पर कोई एटीजंस नहीं होता उनका ग्रुप "ओ" कहलाता है। जिनके रक्त कण पर आर-एच एटीजंस पाया जाता है वे आर-एच पाजिटिव और जिनपर नहीं पाया जाता वे आर-एच नेगेटिव कहलाते हैं। ओ-वर्ग वाले व्यक्ति को सर्वदाता तथा एबी वाले को सर्वग्राही कहा जाता है। परन्तु एबी रक्त वाले को एबी रक्त ही दिया जाता है। जहां स्वस्थ व्यक्ति का रक्त किसी की जान बचा सकता है, वहीं रोगी, अस्वस्थ व्यक्ति का खून किसी के लिये जानलेवा भी साबित हो सकता है। इसीलिए खून लेने-देने में बहुत सावधानी की आवश्यकता होती है। लहू का pH मान 7.4 होता है कार्य.

नई!!: कलिल और रक्त · और देखें »

रेशा

रेशा (fiber) किसी प्राकृतिक या कृत्रिम पदार्थों के बने पतले तंतु को कहते हैं। यह ऊन, कपास, कागज़, पेड़ों की छाल, पॉलिएस्टर और कई अन्य सामग्रियों के हो सकते हैं। आम तौर पर पतले तंतु को ही रेशा कहा जाता है। मोटे तंतुओं को अक्सर 'रज्जू' (chord) कहा जाता है। मानवीय प्रयोग में कई प्रकार के रेशों को बुनकर चीज़ें बनाई जाती है, उदाहरण के लिये वस्त्र। .

नई!!: कलिल और रेशा · और देखें »

साबुन

तरह-तरह के सजावटी साबुन साबुन उच्च अणु भार वाले कार्बनिक वसीय अम्लों के सोडियम या पोटैशियम लवण है। मृदु साबुन का सूत्र C17H35COOK एवं कठोर साबुन का सूत्र C17H35COONa है। साबुनीकरण की क्रिया में वनस्पति तेल या वसा एवं कास्टिक सोडा या कास्टिक पोटाश के जलीय घोल को गर्म करके रासायनिक प्रतिक्रिया के द्वारा साबुन का निर्माण होता तथा ग्लीसराल मुक्त होता है। साधारण तापक्रम पर साबुन नरम ठोस एवं अवाष्पशील पदार्थ है। यह कार्बनिक मिश्रण जल में घुलकर झाग उत्पन्न करता है। इसका जलीय घोल क्षारीय होता है जो लाल लिटमस को नीला कर देता है। .

नई!!: कलिल और साबुन · और देखें »

सूक्ष्मदर्शी

सूक्ष्मदर्शी या सूक्ष्मबीन (माइक्रोस्कोप) वह यंत्र है जिसकी सहायता से आँख से न दिखने योग्य सूक्ष्म वस्तुओं को भी देखा जा सकता है। सूक्ष्मदर्शी की सहायता से चीजों का अवलोकन व जांच किया जाता है वह सूक्ष्मदर्शन कहलाता है। सूक्ष्मदर्शी का इतिहास लगभग ४०० वर्ष पुराना है। सबसे पहले नीदरलैण्ड में सन १६०० के आस-पास किसी काम के योग्य सूक्ष्मदर्शी का विकास हुआ। .

नई!!: कलिल और सूक्ष्मदर्शी · और देखें »

विलयन

नमक चीनी के घोल की प्रस्तुति दो या दो से अधिक पदार्थों के समांगी मिश्रण को विलयन कहते हैं। किसी निश्चित तापमान पर विलयन के उपादानों का आपेक्षिक अनुपात एक सीमा तक परिवर्तित किया जा सकता है। जब चीनी को पानी में घोला जाता है तो एक समांगी मिश्रण बनता है। यह समांगी मिश्रण चीनी का पानी में विलयन कहलाता है। विलेय + विलायक .

नई!!: कलिल और विलयन · और देखें »

गैस

गैसों का कण मॉडल: गैसों के कणों के बीच की औसत दूरी अपेक्षाकृत अधिक होती है। गैस (Gas) पदार्थ की तीन अवस्थाओं में से एक अवस्था का नाम है (अन्य दो अवस्थाएँ हैं - ठोस तथा द्रव)। गैस अवस्था में पदार्थ का न तो निश्चित आकार होता है न नियत आयतन। ये जिस बर्तन में रखे जाते हैं उसी का आकार और पूरा आयतन ग्रहण कर लेते हैं। जीवधारियों के लिये दो गैसे मुख्य हैं, आक्सीजन गैस जिसके द्वारा जीवधारी जीवित रहता है, दूसरी जिसे जीवधारी अपने शरीर से छोड़ते हैं, उसका नाम कार्बन डाई आक्साइड है। इनके अलावा अन्य गैसों का भी बहु-प्रयोग होता है, जैसे खाना पकाने वाली रसोई गैस। पानी दो गैसों से मिलकर बनता है, आक्सीजन और हाइड्रोजन। .

नई!!: कलिल और गैस · और देखें »

कांच

स्वच्छ पारदर्शी कांच का बना प्रकाश बल्ब काच, काँच या कांच (glass) एक अक्रिस्टलीय ठोस पदार्थ है। कांच आमतौर भंगुर और अक्सर प्रकाशीय रूप से पारदर्शी होते हैं। काच अथव शीशा अकार्बनिक पदार्थों से बना हुआ वह पारदर्शक अथवा अपारदर्शक पदार्थ है जिससे शीशी बोतल आदि बनती हैं। काच का आविष्कार संसार के लिए बहुत बड़ी घटना थी और आज की वैज्ञानिक उन्नति में काच का बहुत अधिक महत्व है। किन्तु विज्ञान की दृष्टि से 'कांच' की परिभाषा बहुत व्यापक है। इस दृष्टि से उन सभी ठोसों को कांच कहते हैं जो द्रव अवस्था से ठण्डा होकर ठोस अवस्था में आने पर क्रिस्टलीय संरचना नहीं प्राप्त करते। सबसे आम काच सोडा-लाइम काच है जो शताब्दियों से खिड़कियाँ और गिलास आदि बनाने के काम में आ रहा है। सोडा-लाइम कांच में लगभग 75% सिलिका (SiO2), सोडियम आक्साइड (Na2O) और चूना (CaO) और अनेकों अन्य चीजें कम मात्रा में मिली होती हैं। काँच यानी SiO2 जो कि रेत का अभिन्न अंग है। रेत और कुछ अन्य सामग्री को एक भट्टी में लगभग 1500 डिग्री सैल्सियस पर पिघलाया जाता है और फिर इस पिघले काँच को उन खाँचों में बूंद-बूंद करके उंडेला जाता है जिससे मनचाही चीज़ बनाई जा सके। मान लीजिए, बोतल बनाई जा रही है तो खाँचे में पिघला काँच डालने के बाद बोतल की सतह पर और काम किया जाता है और उसे फिर एक भट्टी से गुज़ारा जाता है। .

नई!!: कलिल और कांच · और देखें »

यहां पुनर्निर्देश करता है:

कोलायड, कोलायडी विलयन, कोलाइड, कोलाइड्स, कोलॉइड

निवर्तमानआने वाली
अरे! अब हम फेसबुक पर हैं! »