लोगो
यूनियनपीडिया
संचार
Google Play पर पाएं
नई! अपने एंड्रॉयड डिवाइस पर डाउनलोड यूनियनपीडिया!
डाउनलोड
ब्राउज़र की तुलना में तेजी से पहुँच!
 

उच्चतापसह धातु

सूची उच्चतापसह धातु

उच्चतापसह धातु (Refractory metal, अर्थ: ऊंचा तापमान सहने वाली धातु) धातुओं की एक श्रेणी है जो अत्याधिक सख़्त होती हैं और बिना आकार खोये ऊँचा तापमान सह सकती हैं। इस श्रेणी में कौन-सी धातु शामिल है और कौन-सी नहीं इस बात को लेकर वैज्ञानिकों में मतभेद है, लेकिन आमतौर पर आवर्त सारणी (पीरियोडिक टेबल) की ५वीं कतार के दो तत्व - नायोबियम (Nb) व मोलिब्डेनम (Mo) - और ६ठीं कतार के तीन तत्व - टैंटेलम (Ta), टंग्स्टन (W) व रीनियम (Re) - इसमें शामिल माने जाते हैं। इन सभी का पिघलाव तापमान २००० °सेंटीग्रेड से अधिक होता है और साधारण तापमान पर यह सभी अधिक कठोरता प्रदर्शित करते हैं। यह अन्य तत्वों के साथ रासायनिक अभिक्रियाओं (रियेक्शन) में भी असानी से भाग नहीं लेते और अपनी शुद्धता बनाये रखते हैं। इन कारणों से औज़ारों और औद्योगिक प्रयोगों के लिये यह बहुत भरोसेमंद होते हैं। .

12 संबंधों: टंगस्टन, टैंटेलम, धातु, नायोबियम, मोलिब्डेनम, रासायनिक तत्व, रासायनिक अभिक्रिया, रीनियम, गलनांक, आवर्त सारणी, कठोरता, उपकरण

टंगस्टन

टंगस्टन से निर्मित फिलामेण्ट का आरम्भिक भाग टंगस्टन (Tungsten) अथवा वोल्फ्राम (Wolfram) आवर्त सारणी के छठे अंतर्वर्ती समूह (transition group) का तत्व है। प्राकृतिक अवस्था में इसके पाँच स्थायी समस्थानिक पाए जाते हैं, जिनकी द्रव्यमान संख्याएँ 180, 182, 183, 184 तथा 186 हैं। इनके अतिरिक्त 181, 185 तथा 187 द्रव्यमान संख्याओं के रेडियधर्मी समस्थानिक कृत्रिम साधनों द्वारा निर्मित हुए हैं। 18वी शताब्दी तक टंगस्टन के अयस्क टिन के ही यौगिक माने जाते थे। सन् 1781 में शेले (Scheele) नामक वैज्ञानिक ने यह सिद्ध किया कि इसके अयस्क में नवीन अम्ल वर्तमान है, जिसे उसने टंग्स्टिक अम्ल कहा। इसके बाद धातु द्वारा इस अम्ल के निर्माण की भी पुष्टि हुई। इस तत्व के दो मुख्य अयस्क हैं: शीलाइट (Scheelite) और वोल्फ्रमाइट (Wolframite)। शीलाइट अयस्क में प्रधानत:- कैल्सियम टंग्स्टेट, (Ca WO4), रहता है और वोल्फ्रेमाइट में लौह तथा मैंगनीज टंग्स्टेट, (FeWO4. Mn WO4), का संमिश्रण रहता है। टंग्स्टन के मुख्य उत्पादक बर्मा, चीन, जापान, बोलिविया, संयुक्त राज्य अमेरिका और आस्ट्रेलिया हैं। टंग्स्टन अयस्क को सांद्रित कर सोडियम कार्बोनेट, (Na2CO3), से मिलाकर परावर्तन भ्राष्ट्र में लगभग 1,0000 सें0 तक गरम करते हैं। इस क्रिया द्वारा सोडियम टंग्स्टेट, (Na2WO4), बनता है ओर लौह, मैंगनीज आदि अपने कार्वोनेटों में परिणत हो जाते हैं। सोडियम टंग्स्टेट गरम पानी में विलेय है और इस प्रकार सम्मिश्रण से अलग हो सकता है। तत्पश्चात उबलते हाइड्रोक्लोरिक अम्ल, हाक्लो (HCl), की क्रिया द्वारा टंग्स्टिक अम्ल अवक्षेपित हो जाता है, जिसे सुखाकर दहन करने पर पीले रंग का टंग्स्टन ऑक्साइड, (WO2), मिलता है। हाइड्रोजन द्वारा ऑक्साइड के अवकरण से टंग्स्टन धातु तैयार होती है। .

नई!!: उच्चतापसह धातु और टंगस्टन · और देखें »

टैंटेलम

टैंटेलम (Tantalum) आवर्त सारणी के पंचम संक्रमण समूह का तत्व है। इसका केवल एक स्थिर समस्थानिक, द्रवमानसंख्या 181, प्राप्त है। इसके चार कृत्रिम रेडियधर्मी समस्थानिक भी ज्ञात हैं, जिनकी द्रव्यमान संख्या 176, 177, 180 और 182 है। इस तत्व की खोज 1872 ई. में एकबर्ग (Ekeberg) नामक वैज्ञानिक ने की थी। टैंटेलम सदैव नियोबियम के साथ मिश्रित पाया जाता है। टैंटेलाइट,, इस तत्व का मुख्य खनिज है। यह कोलंबाइट, Fe (Nb O3)2 के साथ मिश्रित रहता है। यह आस्ट्रेलिया, संयुक्त राज्य अमरीका, ब्राजिल एवं कांगो में मुख्य रूप से पाया जाता है। टैंटेलम तत्व को नियोबियम से अलग करने की विधि डी मौरिग्नैक (De Morignac) ने सन् 1866 में पूरी की। अब भी यही विधि इस कार्य के लिये उपयोग में आती है। इस विधि में अयस्क को सर्वप्रथम सोडियम हाइड्रॉक्साइड के साथ गलाते हैं। इसे जल से धोकर गरम हाइड्रोक्लोरिक अम्ल से पाचित करने पर, ट्रैंटेलिक एवं नियोबिक अम्ल का मिश्रण मिलता है। इसे हाइड्रोफ्लोरिक अम्ल, (H F), में घुलाकर पोटासियम क्लोराइड के साथ मिश्रित करने पर टैंटेलम नियोबियम की डाइफ्लोराइड, (K2 Ta F7. K2 Nb O F5 H2 O), बनेगी। इस मिश्रण के संतृप्त विलयन से मणिभीकरण करने पर टैंटेलम लवण के मणिभ अलग जो जाते हैं और नियोबियम का यौगिक विलयन में रहता है। टैंटेलम के डाइफ्लोराइड को सोडियम धातु के साथ निर्वात नलिका में गरम करने पर टैंटेलम धातु बच जाती है। नई विधि के अनुसार द्रवित डाइफ्लोराइड का लौह के बरतन में कार्बन धनाग्र (anode) द्वारा विद्युद्विच्छेदन करते हैं। इससे चूर्ण अवस्था में टैंटेलम धातु मिलती है। चूर्ण को उच्च ताप पर दबाव के साथ गरम कर धातु के तार बनाए जाते हैं। .

नई!!: उच्चतापसह धातु और टैंटेलम · और देखें »

धातु

'धातु' के अन्य अर्थों के लिए देखें - धातु (बहुविकल्पी) ---- '''धातुएँ''' - मानव सभ्यता के पूरे इतिहास में सर्वाधिक प्रयुक्त पदार्थों में धातुएँ भी हैं लुहार द्वारा धातु को गर्म करने पर रसायनशास्त्र के अनुसार धातु (metals) वे तत्व हैं जो सरलता से इलेक्ट्रान त्याग कर धनायन बनाते हैं और धातुओं के परमाणुओं के साथ धात्विक बंध बनाते हैं। इलेक्ट्रानिक मॉडल के आधार पर, धातु इलेक्ट्रानों द्वारा आच्छादित धनायनों का एक लैटिस हैं। धातुओं की पारम्परिक परिभाषा उनके बाह्य गुणों के आधार पर दी जाती है। सामान्यतः धातु चमकीले, प्रत्यास्थ, आघातवर्धनीय और सुगढ होते हैं। धातु उष्मा और विद्युत के अच्छे चालक होते हैं जबकि अधातु सामान्यतः भंगुर, चमकहीन और विद्युत तथा ऊष्मा के कुचालक होते हैं। .

नई!!: उच्चतापसह धातु और धातु · और देखें »

नायोबियम

नायोबियम (Niobium) एक रासायनिक तत्व है। इसका प्रतीक है - Nb.

नई!!: उच्चतापसह धातु और नायोबियम · और देखें »

मोलिब्डेनम

मोलिब्डेनम (Molybdenum) एक रासायनिक तत्व है जिसका प्रतीक Mo एवं परमाणु क्रमांक ४२ है। इसके खनिज तो बहुत समय से ज्ञात हैं किन्तु तत्व के रूप में इसकी पहचान १७७८ में शीले ने की। मोलिब्डेनम के सात स्थिर समस्थानिक पाए जाते हैं, जिनकी द्रव्यमान संख्या ९२, ९४, ९५, ९६, ९७, ९८ और १०० है। इनके अतिरिक्त द्रव्यमान संख्या ९३, ९९, १०१ और १०५ के अस्थिर समस्थानिक कृत्रिम विधि से निर्मित हुए हैं। इसके अयस्क मोलिब्डेनाइट को बहुत काल तक भूल से ग्रेफाइट समझा गया। सन् १७७८ में शीले ने इस अयस्क से मोलिब्डिक अम्ल बनाया। सन् १७८२ में येल्म (Hyelm) ने मोलिब्डेनम ऑक्साइड का कार्बन द्वारा अपचयन कर मोलिब्डेनम घातु तैयार की। मोलिब्डेनम स्वतंत्र अवस्था में नहीं मिलता। मोलिब्डेनाइट MnS2 एवं बुल्फेनाइट (PbMoO4) इसके मुख्य अयस्क हैं। संयुक्त राज्य अमरीका इसका मुख्य स्रोत है। चिली, दक्षिणी अमरीका और नार्वे में भी इसके अयस्क प्राप्य हैं। .

नई!!: उच्चतापसह धातु और मोलिब्डेनम · और देखें »

रासायनिक तत्व

रासायनिक तत्वों की आवर्त सारणी रासायनिक तत्व (या केवल तत्व) ऐसे उन शुद्ध पदार्थों को कहते हैं जो केवल एक ही तरह के परमाणुओं से बने होते हैं। या जो ऐसे परमाणुओं से बने होते हैं जिनके नाभिक में समान संख्या में प्रोटॉन होते हैं। सभी रासायनिक पदार्थ तत्वों से ही मिलकर बने होते हैं। हाइड्रोजन, नाइट्रोजन, आक्सीजन, तथा सिलिकॉन आदि कुछ तत्व हैं। सन २००७ तक कुल ११७ तत्व खोजे या पाये जा चुके हैं जिसमें से ९४ तत्व धरती पर प्राकृतिक रूप से विद्यमान हैं। कृत्रिम नाभिकीय अभिक्रियाओं के परिणामस्वरूप उच्च परमाणु क्रमांक वाले तत्व समय-समय पर खोजे जाते रहे हैं। .

नई!!: उच्चतापसह धातु और रासायनिक तत्व · और देखें »

रासायनिक अभिक्रिया

लकड़ी का जलना एक रासायनिक अभिक्रिया है। एक बीकर में हाइड्रोजन क्लोराइड की वाष्प में परखनली से अमोनिया की वाष्प मिलाने से एक नया पदार्थ अमोनियम क्लोराइड बनते हुए रासायनिक अभिक्रिया में एक या अधिक पदार्थ आपस में अन्तर्क्रिया (इन्टरैक्शन) करके परिवर्तित होते हैं और एक या अधिक भिन्न रासायनिक गुण वाले पदार्थ बनते हैं। किसी रासायनिक अभिक्रिया में भाग लेने वाले पदार्थों को अभिकारक (रिएक्टैन्ट्स) कहते हैं। अभिक्रिया के फलस्वरूप उत्पन्न पदार्थों को उत्पाद (प्रोडक्ट्स) कहते हैं। लैवासिये के समय से ही ज्ञात है कि रासायनिक अभिक्रिया बिना किसी मापने योग्य द्रव्यमान परिवर्तन के होती है। (द्रव्यमान परिवर्तन अत्यन्त कम होता है जिसे मापना कठिन है)। इसी को द्रव्यमान संरक्षण का नियम कहते हैं। अर्थात किसी रासायनिक अभिक्रिया में न तो द्रव्यमान नष्ट होता है न ही बनता है; केवल पदार्थों का परिवर्तन होता है। परम्परागत रूप से उन अभिक्रियाओं को ही रासायनिक अभिक्रिया कहते हैं जिनमें रासायनिक बन्धों को तोडने या बनाने में एलेक्ट्रानों की गति जिम्मेदार होती है। .

नई!!: उच्चतापसह धातु और रासायनिक अभिक्रिया · और देखें »

रीनियम

रेनियम (Rhenium; संकेत: Re) एक रासायनिक तत्व है। इसका परमाणुभार १८६.३१ तथा परमाणु संख्या ७५ है। इसका आविष्कार १९२५ ई. में इडा तथा वाल्टर नौडाक (Ida and Walter Noddock) द्वारा हुआ था। इसके स्थायी समस्थानिक की द्रव्यमान संख्या १८५ है और अन्य रेडियोऐक्टिव समस्थानिक १८२, १८३, १८४, १८६, १८७ और १८८ द्रव्यमान संख्याओं के प्राप्त हैं। यह तत्व अनेक खनिजों में बहुत विस्तृत पाया जाता है, पर बड़ी अल्प मात्रा में ही। खनिजों में यह सल्फाइड के रूप में रहता है। इसके ऑक्साइड वाष्पशील होते हैं, अत: खनिजों के प्रद्रावण पर यह अवशेष में, या चिमनी धूल में, सांद्रित रहता है। इसका निष्कर्षण पोटैशियम पररेनेट के रूप में होता है, जो जल में अल्प विलेय है। लवण के पुन: क्रिस्टलीकरण से यह शुद्ध रूप में प्राप्त होता है। हाइड्रोजन के वातावरण में पोटैशियम या अमोनियम पररेनेट के अपचयन से धूसर, या काले चूर्ण के रूप में धातु प्राप्त होती है। ऊँचे ताप पर यह धातु स्थूल रूप में प्राप्त होती है। धातु का घनत्व २१ और गलनांक ३,१४० डिग्री सेल्सियस है। इसे १५० डिग्री सेल्सियस से ऊपर गरम करने से ऑक्साइड बनता है। इसके अनेक ऑक्साइड बनते हैं। इसका क्लोराइड, ऑक्सीक्लोराइड, सल्फाइड और फॉस्फाइड भी बनता है। यह हाइड्रोक्लोरिक अम्ल में अविलेय है, पर नाइट्रिक अम्ल में विलेय है। इसकी अनेक मिश्रधातुएँ बनी हैं। श्रेणी:रीनियम श्रेणी:रासायनिक तत्व श्रेणी:संक्रमण धातु श्रेणी:उच्चतापसह धातुएँ.

नई!!: उच्चतापसह धातु और रीनियम · और देखें »

गलनांक

किसी ठोस पदार्थ का गलनांक (या द्रवणांक (melting point) वह तापमान होता है जिस पर वह अपनी ठोस अवस्था से पिघलकर द्रव अवस्था में पहुँच जाता है। गलनांक पर ठोस और द्रव प्रावस्था साम्यावथा में होती हैं। जब किसी पदार्थ की अवस्था द्रव से ठोस अवस्था में परिवर्तित होती है तो जिस तापमान पर यह होता है उस तापमान को हिमांक (freezing point) कहा जाता है। कई पदार्थों में परमशीतल होने की क्षमता होती है, इसलिए हिमांक को किसी पदार्थ की एक विशेष गुण नहीं माना जाता है। इसके विपरीत जब कोई ठोस एक निश्चित तापमान पर ठोस से द्रव अवस्था ग्रहण करता है वह तापमान उस ठोस का गलनांक कहलाता है। .

नई!!: उच्चतापसह धातु और गलनांक · और देखें »

आवर्त सारणी

आवर्त सारणी (अथवा, तत्वों की आवर्त सारणी) रासायनिक तत्वों को उनकी संगत विशेषताओं के साथ एक सारणी के रूप में दर्शाने की एक व्यवस्था है। आवर्त सारणी में रासायनिक तत्त्व परमाणु क्रमांक के बढ़ते क्रम में सजाये गये हैं तथा आवर्त (पिरियड), प्राथमिक समूह, द्वितीयक समूह में वर्गीकृत किया गया है। वर्तमान आवर्त सारणी मैं ११८ ज्ञात तत्व सम्मिलित हैं। सबसे पहले रूसी रसायन-शास्त्री मेंडलीफ (सही उच्चारण- मेन्देलेयेव) ने सन १८६९ में आवर्त नियम प्रस्तुत किया और तत्वों को एक सारणी के रूप में प्रस्तुत किया। इसके कुछ महीनों बाद जर्मन वैज्ञानिक लोथर मेयर (1830-1895) ने भी स्वतन्त्र रूप से आवर्त सारणी का निर्माण किया। मेन्देलेयेव की सारणी से अल्फ्रेड वर्नर (Alfred Werner) ने आवर्त सारणी का वर्तमान स्वरूप निर्मित किया। सन १९५२ में कोस्टा रिका के वैज्ञानिक गिल चावेरी (scientist Gil Chaverri) ने आवर्त सारणी का एक नया रूप प्रस्तुत किया जो तत्वों के इलेक्ट्रानिक संरचना पर आधारित था। रसायन शास्त्रियों के लिये आवर्त सारणी अत्यन्त महत्वपूर्ण एवं उपयोगी है। इसके कारण कम तत्वों के गुणधर्मों को ही याद रखने से काम चल जाता है क्योंकि आवर्त सारणी में किसी समूह (उर्ध्वाधर पंक्ति) या किसी आवर्त (क्षैतिज पंक्ति) में गुणधर्म एक निश्चित क्रम से एवं तर्कसम्मत तरीके से बदलते हैं। नीचे आवर्त सारणी का आधुनिक रूप दिखाया गया है जिसमें १८ वर्ग तथा ७ आवर्त हैं- .

नई!!: उच्चतापसह धातु और आवर्त सारणी · और देखें »

कठोरता

विकर्स का कठोरतामापी एलास्टोमर पदार्थों के बल-विकृति ग्राफ में हिस्टेरिसिस पायी जाती है (प्रतिबल बढ़ाने पर और घटाने पर ग्राफ अलग-अलग मार्ग से जाता है)। इसे एलास्टिक हिस्टेरिस कहते हैं। प्रतिक्षेप कठोरता (रिबाउण्ड हार्डनेस) का मापन इसी सिद्धान्त पर आधारित है। प्रत्यास्थ पदार्थों में यह हिस्टेरिसिस् नहीं पायी जाती। कठोरता (Hardness) किसी ठोस का वह गुण है जिससे पता चलता है कि उस पर बल लगाने पर उसे स्थायी रूप से विकृत करने की कितनी सम्भावना है। सामान्यतः अधिक कठोर ठोस वह होता है जिसमें अन्तराणविक बल अधिक मजबूत होगा। कठोर पदार्थों के कुछ उदाहरण: सिरामिक (ceramics), कंक्रीट (concrete), कुछ धातुएँ तथा अतिकठोर पदार्थ। 'कठोरता' को मापने के अलग-अलग तरीके हैं.

नई!!: उच्चतापसह धातु और कठोरता · और देखें »

उपकरण

हथौड़ा उपकरण या औजार (tool) उन युक्तियों को कहते हैं जो किसी कार्य को करने में सुविधा या सरलता या आसानी प्रदान करते हैं। कुछ उपकरण उन कार्यों को भी सम्पादित कर सकते हैं जो उनके बिना सम्भव ही नहीं होता। सरल मशीनें सबसे मौलिक उपकरण कही जा सकती हैं। हथौड़ा एक औजार है; इसी तरह टेलीफोन भी एक औजार है। पहले ऐसी मान्यता थी कि केवल मानव ही उपकरणों का प्रयोग करता है एवं उपकरणों के उपयोग करने के फलस्वरूप ही मानव इतना विकास कर पाया। किन्तु बाद में पता चला कि कुछ चिड़ियां एवं बन्दर आदि भी औजारों का प्रयोग करते हैं। औद्योगिक क्रांति के समय मशीन उपकरणों (Machine tools) के कारण नये औजारों के उत्पादन अचानक बहुत बढ़ गया था। नैनोतकनीकी के समर्थकों का विचार है कि जैसे ही औजार सूक्ष्म (microscopic) हो जायेंगे, ऐसी ही तीव्र वृद्धि पुनः देखने को मिलेगी। कुछ उपकरण .

नई!!: उच्चतापसह धातु और उपकरण · और देखें »

निवर्तमानआने वाली
अरे! अब हम फेसबुक पर हैं! »