लोगो
यूनियनपीडिया
संचार
Google Play पर पाएं
नई! अपने एंड्रॉयड डिवाइस पर डाउनलोड यूनियनपीडिया!
मुक्त
ब्राउज़र की तुलना में तेजी से पहुँच!
 

प्रोटॉन

सूची प्रोटॉन

प्राणु संरचना प्राणु (प्रोटॉन) एक धनात्मक विध्युत आवेशयुक्त मूलभूत कण है, जो परमाणु के नाभिक में न्यूट्रॉन के साथ पाया जाता हैं। इसे p प्रतिक चिन्ह द्वारा दर्शाया जाता है। इस पर 1 दो अप-क्वार्क और एक डाउन-क्वार्क से मिलकर बना होता है। स्वतंत्र रूप से यह उदजन आयन H+ के रूप में पाया जाता है। .

60 संबंधों: चलावयव, ट्राइटियम, एसिटिक अम्ल, एंटीमैटर, तारकीय आंधी, धातु हाइड्रोजन, नाभिकीय बल, न्यूट्रॉन, परमाणु, परमाणु नाभिक, परमाणु क्रमांक, परिवर्ती उर्जा साइक्लोट्रॉन केन्द्र, पश्चिमी संस्कृति, प्रति-कण, प्रतिप्रोटोन, प्रायोगिक भौतिकी, प्रोटियम, प्रोटॉन उत्सर्जन, प्लूटोनियम के समस्थानिक, पोजीट्रॉन, फर्मिऑन, फर्मी अन्योन्यक्रिया, बिग बैंग सिद्धांत, ब्रह्माण्ड किरण, बेर्यॉन, बोसॉन, मैग्नेशियम के समस्थानिक, मूलभूत भौतिक नियतांक, मोटर वाहन उद्योग, रसायन विज्ञान का इतिहास, रासायनिक तत्व, लार्ज हैड्रॉन कोलाइडर, लुई द ब्रॉई, समस्थानिक, सौर पवन, सूर्य, हाइड्रोजन, हाइड्रोजन परमाणु, हाइड्रोजन के समस्थानिक, हिदेकी युकावा, हिलियम-३, हिलियम-४, हेड्रॉन, जल (अणु), विचित्र पदार्थ, आयन, इलेक्ट्रॉन, कण भौतिकी, कणाभ, कार्बन-१२, ..., कार्बन-१४, क्लोरीन के समस्थानिक, क्वार्क, क्वार्क-ग्लूऑन प्लाज्मा, केन्द्रक (परमाणु), अंतरिक्ष विज्ञान, , १० सितंबर, २०१०, B − L सूचकांक विस्तार (10 अधिक) »

चलावयव

कार्बनिक यौगिकों के उन संरचनात्मक समावयवों को चलावयव (Tautomers) कहते हैं जो आसानी से परस्पर परिवर्तित हो जाते हैं। इस क्रिया में अधिकतर प्रोटॉन का पुनर्विन्यास होता है। यद्यपि यह एक जटिल कॉन्सेप्ट है किन्तु चलावयवता अमीनो अम्लों एवं न्युक्लिक अम्लों के सन्दर्भ में बहुत महत्व रखती है क्योंकि दोनों ही जीवन के मूलभूत निर्माण-इकाई हैं। .

नई!!: प्रोटॉन और चलावयव · और देखें »

ट्राइटियम

ट्राइटियम हाइड्रोजन का एक रेडियोधर्मी समस्थानिक होता है। इसे ट्राइटॉन भी कहते हैं। ट्राइटियम के नाभिक में एक प्रोटॉन और दो न्यूट्रॉन होते हैं, जबकि हाइड्रोजन के सबसे प्रचुर मात्रा में उपलब्ध समस्थानिक प्रोटियम में मात्र एक प्रोटॉन ही होता है और न्यूट्रॉन अनुपस्थित होता है।। हिन्दुस्तान लाइव। २ दिसम्बर २००९ इस समस्थानिक का नाम एक ग्रीक शब्द से मिलकर बना है, जिसका अर्थ थर्ड या तृतीय होता है। ट्राइटियम की उत्पत्ति हैवी वाटर मॉडरेट रिएक्टर में ड्यूटीरियम माध्यम में न्यूट्रान के टकराव से होती है।। नवभारत टाइम्स। ७ अक्टूबर २००८ इस प्रक्रिया में कुछ मात्रा में ट्राइटियम बनता है। ट्राइटियम का आण्विक भार ३.०१६०४९२ होता है। मानक तापमान और दबाव पर ट्राइटियम गैस रूप में रहता है। ऑक्सीजन से मिश्रित होने पर यह ये तरल रूप धारण करता है, जिसे ट्राइटीकृत जल (ट्राइटिएटेड वाटर) कहते हैं। ये रबड़, प्लास्टिक और कुछ तरह के इस्पातों के लिए पारगम्य होता है। ट्राइटियम की खोज १९२० में वाल्टर रसेल ने की थी। वहीं विल्फर्ड एफ. लिबी ने यह खोज की थी कि ट्राइटियम का प्रयोग डेटिंग वाटर की तरह किया जा सकता है, जो मदिरा उत्पादन के लिए निर्माण किया जाता है। हाइड्रोजन की तरह ट्राइटियम को सीमाबद्ध नहीं किया जा सकता। ट्राइटियम और ड्यूटेरियम को परमाणु ईंधन की तरह प्रयोग किया जाता है।। दैनिक भास्कर। ३० दिसम्बर २००८ वैज्ञानिकों के अनुसार ये चर्चा का विषय रहा है, कि ट्राइटियम को प्रस्तावित फ़्यूज़न रियेक्टरों में अधिक मात्र में प्रयोग करने पर रेडियोधर्मी प्रदूषण संभव है। विभिन्न देशों में ट्राइटियम के प्रयोग पर निषेध है। सूर्य पर जो प्रक्रियाएँ होती हैं, उन में हाइड्रोजन के दोनों ड्यूटेरियम और ट्राइटियम के अणुओं के मेल से अधिक मात्रा में ऊर्जा पैदा होती है। ड्यूटेरियम और ट्राइटियम के एक ग्राम से उतनी ही ऊर्जा उत्पन होती है जितनी ८ टन तेल से पैदा की जा सकती है।। वॉयस ऑफ रशिया। २ अगस्त २००७ ट्राइटियम लगभग हाइड्रोजन से मिलता जुलता होता है, जिसके कारण यह सरलता से मिलकर कार्बनिक बंध बना लेते हैं। ट्राइटियम बीटा का मजबूत उत्सर्जक नहीं है जिस कारण यह काफी खतरनाक होता है। खाना, पानी और त्वचा द्वारा अवशोषण किए जाने के कारण सांस लेने या खाना खाने के दौरान काफी हानिकारक होता है। File:Tritium-watch.jpg|ट्राईटियम डायल वाली घड़ी File:Trtium.jpg|ट्राइटियम भरी ट्यूबलाइट .

नई!!: प्रोटॉन और ट्राइटियम · और देखें »

एसिटिक अम्ल

शुक्ताम्ल (एसिटिक अम्ल) CH3COOH जिसे एथेनोइक अम्ल के नाम से भी जाना जाता है, एक कार्बनिक अम्ल है जिसकी वजह से सिरका में खट्टा स्वाद और तीखी खुशबू आती है। यह इस मामले में एक कमज़ोर अम्ल है कि इसके जलीय विलयन में यह अम्ल केवल आंशिक रूप से विभाजित होता है। शुद्ध, जल रहित एसिटिक अम्ल (ठंडा एसिटिक अम्ल) एक रंगहीन तरल होता है, जो वातावरण (हाइग्रोस्कोपी) से जल सोख लेता है और 16.5 °C (62 °F) पर जमकर एक रंगहीन क्रिस्टलीय ठोस में बदल जाता है। शुद्ध अम्ल और उसका सघन विलयन खतरनाक संक्षारक होते हैं। एसिटिक अम्ल एक सरलतम कार्बोक्जिलिक अम्ल है। ये एक महत्वपूर्ण रासायनिक अभिकर्मक और औद्योगिक रसायन है, जिसे मुख्य रूप से शीतल पेय की बोतलों के लिए पोलिइथाइलीन टेरिफ्थेलेट; फोटोग्राफिक फिल्म के लिए सेलूलोज़ एसिटेट, लकड़ी के गोंद के लिए पोलिविनाइल एसिटेट और सिन्थेटिक फाइबर और कपड़े बनाने के काम में लिया जाता है। घरों में इसके तरल विलयन का उपयोग अक्सर एक डिस्केलिंग एजेंट के तौर पर किया जाता है। खाद्य उद्योग में एसिटिक अम्ल का उपयोग खाद्य संकलनी कोड E260 के तहत एक एसिडिटी नियामक और एक मसाले के तौर पर किया जाता है। एसिटिक अम्ल की वैश्विक मांग क़रीब 6.5 मिलियन टन प्रतिवर्ष (Mt/a) है, जिसमें से क़रीब 1.5 Mt/a प्रतिवर्ष पुनर्प्रयोग या रिसाइक्लिंग द्वारा और शेष पेट्रोरसायन फीडस्टोक्स या जैविक स्रोतों से बनाया जाता है। स्वाभाविक किण्वन द्वारा उत्पादित जलमिश्रित एसिटिक अम्ल को सिरका कहा जाता है। .

नई!!: प्रोटॉन और एसिटिक अम्ल · और देखें »

एंटीमैटर

एंटीमैटर क्लाउड कण भौतिकी में, प्रतिद्रव्य या एंटीमैटर (antimatter) वस्तुतः पदार्थ के एंटीपार्टिकल के सिद्धांत का विस्तार है। दूसरे शब्दों में, जिस प्रकार पदार्थ कणों का बना होता है उसी प्रकार प्रतिद्रव्य प्रतिकणों से मिलकर बना होता है। उदाहरण के लिये, एक एंटीइलेक्ट्रॉन (एक पॉज़ीट्रॉन, जो एक घनात्मक आवेश सहित एक इलेक्ट्रॉन होता है) एवं एक एंटीप्रोटोन (ऋणात्मक आवेश सहित एक प्रोटोन) मिल कर एक एंटीहाईड्रोजन परमाणु ठीक उसी प्रकार बना सकते हैं, जिस प्रकार एक इलेक्ट्रॉन एवं एक प्रोटोन मिल कर हाईड्रोजन परमाणु बनाते हैं। साथ ही पदार्थ एवं एंटीमैटर के संगम का परिणाम दोनों का विनाश (एनिहिलेशन) होता है, ठीक वैसे ही जैसे एंटीपार्टिकल एवं कण का संगम होता है। जिसके परिणामस्वरूप उच्च-ऊर्जा फोटोन (गामा किरण) या अन्य पार्टिकल-एंटीपार्टिकल युगल बनते हैं। वैसे विज्ञान कथाओं और साइंस फिक्शन चलचित्रों में कई बार एंटीमैटर का नाम सुना जाता रहा है। एंटीहाइड्रोजन परमाणु का त्रिआयामी चित्र एंटीमैटर केवल एक काल्पनिक तत्व नहीं, बल्कि असली तत्व होता है। इसकी खोज बीसवीं शताब्दी के पूर्वाद्ध में हुई थी। तब से यह आज तक वैज्ञानिकों के लिए कौतूहल का विषय बना हुआ है। जिस तरह सभी भौतिक वस्तुएं मैटर यानी पदार्थ से बनती हैं और स्वयं मैटर में प्रोटोन, इलेक्ट्रॉन और न्यूट्रॉन होते हैं, उसी तरह एंटीमैटर में एंटीप्रोटोन, पोसिट्रॉन्स और एंटीन्यूट्रॉन होते हैं।। नवभारत टाइम्स। १२ नवम्बर २००८। हिन्दुस्तान लाइव। ५ मार्च २०१० एंटीमैटर इन सभी सूक्ष्म तत्वों को दिया गया एक नाम है। सभी पार्टिकल और एंटीपार्टिकल्स का आकार एक समान किन्तु आवेश भिन्न होते हैं, जैसे कि एक इलैक्ट्रॉन ऋणावेशी होता है जबकि पॉजिट्रॉन घनावेशी चार्ज होता है। जब मैटर और एंटीमैटर एक दूसरे के संपर्क में आते हैं तो दोनों नष्ट हो जाते हैं। ब्रह्मांड की उत्पत्ति का सिद्धांत महाविस्फोट (बिग बैंग) ऐसी ही टकराहट का परिणाम था। हालांकि, आज आसपास के ब्रह्मांड में ये नहीं मिलते हैं लेकिन वैज्ञानिकों के अनुसार ब्रह्मांड के आरंभ के लिए उत्तरदायी बिग बैंग के एकदम बाद हर जगह मैटर और एंटीमैटर बिखरा हुआ था। विरोधी कण आपस में टकराए और भारी मात्रा में ऊर्जा गामा किरणों के रूप में निकली। इस टक्कर में अधिकांश पदार्थ नष्ट हो गया और बहुत थोड़ी मात्रा में मैटर ही बचा है निकटवर्ती ब्रह्मांड में। इस क्षेत्र में ५० करोड़ प्रकाश वर्ष दूर तक स्थित तारे और आकाशगंगा शामिल हैं। वैज्ञानिकों के अनुमान के अनुसार सुदूर ब्रह्मांड में एंटीमैटर मिलने की संभावना है। अंतरराष्ट्रीय स्तर के खगोलशास्त्रियों के एक समूह ने यूरोपीय अंतरिक्ष एजेंसी (ईएसए) के गामा-किरण वेधशाला से मिले चार साल के आंकड़ों के अध्ययन के बाद बताया है कि आकाश गंगा के मध्य में दिखने वाले बादल असल में गामा किरणें हैं, जो एंटीमैटर के पोजिट्रान और इलेक्ट्रान से टकराने पर निकलती हैं। पोजिट्रान और इलेक्ट्रान के बीच टक्कर से लगभग ५११ हजार इलेक्ट्रान वोल्ट ऊर्जा उत्सर्जित होती है। इन रहस्यमयी बादलों की आकृति आकाशगंगा के केंद्र से परे, पूरी तरह गोल नहीं है। इसके गोलाई वाले मध्य क्षेत्र का दूसरा सिरा अनियमित आकृति के साथ करीब दोगुना विस्तार लिए हुए हैं।। याहू जागरण। १४ जनवरी २००९ एंटीमैटर की खोज में रत वैज्ञानिकों का मानना है कि ब्लैक होल द्वारा तारों को दो हिस्सों में चीरने की घटना में एंटीमैटर अवश्य उत्पन्न होता होगा। इसके अलावा वे लार्ज हैडरन कोलाइडर जैसे उच्च-ऊर्जा कण-त्वरकों द्वारा एंटी पार्टिकल उत्पन्न करने का प्रयास भी कर रहे हैं। पार्टिकल एवं एंटीपार्टिकल पृथ्वी पर एंटीमैटर की आवश्यकता नहीं होती, लेकिन वैज्ञानिकों ने प्रयोगशालाओं में बहुत थोड़ी मात्रा में एंटीमैटर का निर्माण किया है। प्राकृतिक रूप में एंटीमैटर पृथ्वी पर अंतरिक्ष तरंगों के पृथ्वी के वातावरण में आ जाने पर अस्तित्व में आता है या फिर रेडियोधर्मी पदार्थ के ब्रेकडाउन से अस्तित्व में आता है। शीघ्र नष्ट हो जाने के कारण यह पृथ्वी पर अस्तित्व में नहीं आता, लेकिन बाह्य अंतरिक्ष में यह बड़ी मात्र में उपलब्ध है जिसे अत्याधुनिक यंत्रों की सहायता से देखा जा सकता है। एंटीमैटर नवीकृत ईंधन के रूप में बहुत उपयोगी होता है। लेकिन इसे बनाने की प्रक्रिया फिल्हाल इसके ईंधन के तौर पर अंतत: होने वाले प्रयोग से कहीं अधिक महंगी पड़ती है। इसके अलावा आयुर्विज्ञान में भी यह कैंसर का पेट स्कैन (पोजिस्ट्रान एमिशन टोमोग्राफी) के द्वारा पता लगाने में भी इसका प्रयोग होता है। साथ ही कई रेडिएशन तकनीकों में भी इसका प्रयोग प्रयोग होता है। नासा के मुताबिक, एंटीमैटर धरती का सबसे महंगा मैटेरियल है। 1 मिलिग्राम एंटीमैटर बनाने में 250 लाख डॉलर रुपये तक लग जाते हैं। एंटीमैटर का इस्तेमाल अंतरिक्ष में दूसरे ग्रहों पर जाने वाले विमानों में ईधन की तरह किया जा सकता है। 1 ग्राम एंटीमैटर की कीमत 312500 अरब रुपये (3125 खरब रुपये) है। .

नई!!: प्रोटॉन और एंटीमैटर · और देखें »

तारकीय आंधी

अल्फ़ा आराए (α Arae) तारा बहुत तेज़ी से घूर्णन कर रहा है और २,००० किलोमीटर प्रति सैकिंड की तारकीय आंधी से तेज़ी से द्रव्यमान खो रहा है (विशेषकर अपने ध्रुवों से) तारकीय आंधी आणविक या आयोनित गैस के उस प्रवाह को कहते हैं जो किसी तारे के ऊपरी वायुमंडल से तारे के बाहर के व्योम में बहता है। इस आंधी से तारों का द्रव्यमान तीव्र या धीमी गति से कम होता रहता है। भिन्न प्रकार के तारों की अलग-अलग तरह की तारकीय आंधियाँ होती हैं.

नई!!: प्रोटॉन और तारकीय आंधी · और देखें »

धातु हाइड्रोजन

बृहस्पति जैसे कुछ गैस दानव ग्रहों के केन्द्रों में धातु हाइड्रोजन है धातु हाइड्रोजन (metallic hydrogen) हाइड्रोजन की ऐसी अवस्था को कहते हैं जब वह भयंकर दबाव में कुचली जाकर अवस्था परिवर्तन (phase transition) करके विकृत हो जाए।, Gabor Kalman, J. Martin Rommel, Krastan Blagoev, Kastan Blagoev, Springer, 1998, ISBN 978-0-306-46031-9,...

नई!!: प्रोटॉन और धातु हाइड्रोजन · और देखें »

नाभिकीय बल

रीड विभव (Reid potential (1968)) से गणना द्वारा निकाला गया नाभिकीय बल, न्युक्लिआनों के बीच की दूरी के फलन के रूप में परमाणु के नाभिक में स्थित प्रोटॉनों तथा न्यूट्रॉनों के बीच लगने वाला बल नाभिकीय बल (nuclear force) या न्युक्लिऑन-न्युक्लिऑन अन्तःक्रिया (nucleon–nucleon interaction या residual strong force) कहलाता है। .

नई!!: प्रोटॉन और नाभिकीय बल · और देखें »

न्यूट्रॉन

न्यूट्रॉन एक आवेश रहित मूलभूत कण है, जो परमाणु के नाभिक में प्रोटॉन के साथ पाये जाते हैं। जेम्स चेडविक ने इनकी खोज की थी। इसे n प्रतीक चिन्ह द्वारा दर्शाया जाता है। श्रेणी:भौतिकी श्रेणी:भौतिक शब्दावली श्रेणी:रसायन शास्त्र.

नई!!: प्रोटॉन और न्यूट्रॉन · और देखें »

परमाणु

एक परमाणु किसी भी साधारण से पदार्थ की सबसे छोटी घटक इकाई है जिसमे एक रासायनिक तत्व के गुण होते हैं। हर ठोस, तरल, गैस, और प्लाज्मा तटस्थ या आयनन परमाणुओं से बना है। परमाणुओं बहुत छोटे हैं; विशिष्ट आकार लगभग 100 pm (एक मीटर का एक दस अरबवें) हैं। हालांकि, परमाणुओं में अच्छी तरह परिभाषित सीमा नहीं होते है, और उनके आकार को परिभाषित करने के लिए अलग अलग तरीके होते हैं जोकि अलग लेकिन काफी करीब मूल्य देते हैं। परमाणुओं इतने छोटे है कि शास्त्रीय भौतिकी इसका काफ़ी गलत परिणाम देते हैं। हर परमाणु नाभिक से बना है और नाभिक एक या एक से अधिक इलेक्ट्रॉन्स से सीमित है। नाभिक आम तौर पर एक या एक से अधिक न्यूट्रॉन और प्रोटॉन की एक समान संख्या से बना है। प्रोटान और न्यूट्रान न्यूक्लिऑन कहलाता है। परमाणु के द्रव्यमान का 99.94% से अधिक भाग नाभिक में होता है। प्रोटॉन पर सकारात्मक विद्युत आवेश होता है, इलेक्ट्रॉन्स पर नकारात्मक विद्युत आवेश होता है और न्यूट्रान पर कोई भी विद्युत आवेश नहीं होता है। एक परमाणु के इलेक्ट्रॉन्स इस विद्युत चुम्बकीय बल द्वारा एक परमाणु के नाभिक में प्रोटॉन की ओर आकर्षित होता है। नाभिक में प्रोटॉन और न्यूट्रॉन एक अलग बल, यानि परमाणु बल के द्वारा एक दूसरे को आकर्षित करते है, जोकि विद्युत चुम्बकीय बल जिसमे सकारात्मक आवेशित प्रोटॉन एक दूसरे से पीछे हट रहे हैं, की तुलना में आम तौर पर शक्तिशाली है। परमाणु के केन्द्र में नाभिक (न्यूक्लिअस) होता है जिसका घनत्व बहुत अधिक होता है। नाभिक के चारो ओर ऋणात्मक आवेश वाले एलेक्ट्रान चक्कर लगाते रहते हैं जिसको एलेक्ट्रान घन (एलेक्ट्रान क्लाउड) कहते हैं। नाभिक, धनात्मक आवेश वाले प्रोटानों एवं अनावेशित (न्यूट्रल) न्यूट्रानों से बना होता है। जब किसी परमाणु में एलेक्ट्रानों की संख्या उसके नाभिक में स्थित प्रोटानों की संख्या के समान होती है तब परमाणु वैद्युकीय दृष्टि से अनावेशित होता है; अन्यथा परमाणु धनावेशित या ऋणावेशित ऑयन के रूप में होता है। आधुनिक रसायनशास्त्र में शताधिक मूल भूत माने गए हैं, जिनमें से कुछ तो धातुएँ हैं जैसे ताँबा, सोना, लोहा, सीसा, चाँदी, राँगा, जस्ता; कुछ और खनिज हैं, जैसे, गंधक, फासफरस, पोटासियम, अंजन, पारा, हड़ताल, तथा कुछ गैस हैं, जैसे, आक्सीजन, नाइट्रोजन, हाइड्रोजन आदि। इन्हीं मूल भूतों के अनुसार परमाणु आधुनिक रसायन में माने जाते हैं। पहले समझा जाता था कि ये अविभाज्य हैं। अब इनके भी टुकड़े कर दिए गए हैं। नाभिक में प्रोटॉन की संख्या किसी रासायनिक तत्व को परिभाषित करता है: जैसे सभी तांबा के परमाणु में 29 प्रोटॉन होते हैं। न्यूट्रॉन की संख्या तत्व के समस्थानिक को परिभाषित करता है। इलेक्ट्रॉनों की संख्या एक परमाणु के चुंबकीय गुण को प्रभावित करता है। परमाणु अणु के रूप में रासायनिक यौगिक बनाने के लिए रासायनिक आबंध द्वारा एक या अधिक अन्य परमाणुओं को संलग्न कर सकते हैं। परमाणु की संघटित और असंघटित करने की क्षमता प्रकृति में हुए बहुत से भौतिक परिवर्तन के लिए जिम्मेदार है, और रसायन शास्त्र के अनुशासन का विषय है। .

नई!!: प्रोटॉन और परमाणु · और देखें »

परमाणु नाभिक

नाभिक, परमाणु के मध्य स्थित धनात्मक वैद्युत आवेश युक्त अत्यन्त ठोस क्षेत्र होता है। नाभिक, नाभिकीय कणों प्रोटॉन तथा न्यूट्रॉन से बने होते है। इस कण को नूक्लियान्स कहते है। प्रोटॉन व न्यूट्रॉन दोनो का द्रव्यमान लगभग बराबर होता है और दोनों का आंतरिक कोणीय संवेग (स्पिन) १/२ होता है। प्रोटॉन इकाई विद्युत आवेशयुक्त होता है जबकि न्यूट्रॉन अनावेशित होता है। प्रोटॉन और न्यूट्रॉन दोनो न्यूक्लिऑन कहलाते है। नाभिक का व्यास (10−15 मीटर)(हाइड्रोजन-नाभिक) से (10−14 मीटर)(युरेनियम) के दायरे में होता है। परमाणु का लगभग सारा द्रव्यमान नाभिक के कारण ही होता है, इलेक्ट्रान का योगदान लगभग नगण्य होता है। सामान्यतः नाभिक की पहचान परमाणु संख्या Z (प्रोटॉन की संख्या), न्यूट्रॉन संख्या N और द्रव्यमान संख्या A(प्रोटॉन की संख्या + न्यूट्रॉन संख्या) से होती है जहाँ A .

नई!!: प्रोटॉन और परमाणु नाभिक · और देखें »

परमाणु क्रमांक

रसायन विज्ञान एवं भौतिकी में सभी तत्वों का अलग-अलग परमाणु क्रमांक (atomic number) है जो एक तत्व को दूसरे तत्व से अलग करता है। किसी तत्व का परमाणु क्रमांक उसके तत्व के नाभिक में स्थित प्रोटॉनों की संख्या के बराबर होता है। इसे Z प्रतीक से प्रदर्शित किया जाता है। किसी आवेशरहित परमाणु पर एलेक्ट्रॉनों की संख्या भी परमाणु क्रमांक के बराबर होती है। रासायनिक तत्वों को उनके बढते हुए परमाणु क्रमांक के क्रम में विशेष रीति से सजाने से आवर्त सारणी का निर्माण होता है जिससे अनेक रासायनिक एवं भौतिक गुण स्वयं स्पष्ट हो जाते हैं।, American Institute of Physics .

नई!!: प्रोटॉन और परमाणु क्रमांक · और देखें »

परिवर्ती उर्जा साइक्लोट्रॉन केन्द्र

परिवर्ती उर्जा साइक्लोट्रॉन केन्द्र (Variable Energy Cyclotron Centre (VECC)) भारत सरकार के परमाणु उर्जा विभाग का एक अनुसंधान एवं विकास केन्द्र है। यहाँ पर मूलभूत एवं अनुप्रयुक्त नाभिकीय विज्ञान में अनुसंधान होता है। यह भारत के कोलकाता नगर में स्थित है। इस केन्द्र में २२४ सेमी साइक्लोट्रॉन स्थापित है जो भारत में अपने तरह का प्रथम है। यह १९७७ से ही कार्यरत है। इससे विभिन्न उर्जा वाले प्रोटॉन, ड्यूट्रॉन, अल्फा कण एवं अन्य भारी ऑयन के किरण पुंज प्राप्त किये जाते हैं। यह केन्द्र अर्नेट (ERNET) के लिये ट्रन्जिट नोड भी है जो कि दूसरे संस्थानों से आने वाले एलेक्ट्रॉनिक मेल एवं अन्तरजाल का आवश्यक संसादन करता है। .

नई!!: प्रोटॉन और परिवर्ती उर्जा साइक्लोट्रॉन केन्द्र · और देखें »

पश्चिमी संस्कृति

पश्चिमी संस्कृति (जिसे कभी-कभी पश्चिमी सभ्यता या यूरोपीय सभ्यता के समान माना जाता है), यूरोपीय मूल की संस्कृतियों को सन्दर्भित करती है। यूनानियों के साथ शुरू होने वाली पश्चिमी संस्कृति का विस्तार और सुदृढ़ीकरण रोमनों द्वारा हुआ, पंद्रहवी सदी के पुनर्जागरण एवं सुधार के माध्यम से इसका सुधार और इसका आधुनिकीकरण हुआ और सोलहवीं सदी से लेकर बीसवीं सदी तक जीवन और शिक्षा के यूरोपीय तरीकों का प्रसार करने वाले उत्तरोत्तर यूरोपीय साम्राज्यों द्वारा इसका वैश्वीकरण हुआ। दर्शन, मध्ययुगीन मतवाद एवं रहस्यवाद, ईसाई एवं धर्मनिरपेक्ष मानवतावाद की एक जटिल श्रृंखला के साथ यूरोपीय संस्कृति का विकास हुआ। ज्ञानोदय, प्रकृतिवाद, स्वच्छंदतावाद (रोमेन्टिसिज्म), विज्ञान, लोकतंत्र और समाजवाद के प्रयोगों के साथ परिवर्तन एवं निर्माण के एक लंबे युग के माध्यम से तर्कसंगत विचारधारा विकसित हुई.

नई!!: प्रोटॉन और पश्चिमी संस्कृति · और देखें »

प्रति-कण

कण (बायें) और प्रति-कण (दायें) के आकार और विद्युत आवेश का चित्रण। ऊपर से नीचे इलेक्ट्रॉन/पोजीट्रॉन,प्रोटॉन/प्रतिप्रोटोन, न्यूट्रॉन/प्रतिन्यूट्रॉन. किसी भी कण से संबद्ध प्रतिकण भी होता है जिसका द्रव्यमान अभिन्न होता है लेकिन विद्युत आवेश विपरीत होता है। उदाहरण के लिये इलेक्ट्रॉन का प्रति-कण प्रति-इलेक्ट्रॉन एक धनावेशित कण जिसे पोजीट्रॉन कहते हैं, सामान्यतः इसे रेडियोधर्मी पदार्थों के क्षय से बनाया जाता है। प्रकृति के नियम कणों और प्रतिकणो के लिये लगभग सममितीय होते हैं। उदाहरण के लिये एक प्रतिप्रोटोन और पोजीट्रॉन से प्रति-हाइड्रोजन परमाणु का निर्माण होता है, जिसके गुणधर्म भी हाइड्रोजन परमाणु के समान ही हैं। .

नई!!: प्रोटॉन और प्रति-कण · और देखें »

प्रतिप्रोटोन

प्रतिप्रोटोन, प्रोटॉन का प्रतिकण है। जिसे कभी-कभी (उच्चारण पी-बार) प्रोटॉन के प्रतिकण के रूप में जाना जाता है। प्रतिप्रोटोन स्थयी कण है लेकिन आम तौर पर किसी प्रोटॉन के साथ इसका विलोपन हो जाता है और निर्गत रूप में ऊर्जा प्राप्त होती है। .

नई!!: प्रोटॉन और प्रतिप्रोटोन · और देखें »

प्रायोगिक भौतिकी

भौतिक विज्ञान के क्षेत्र में, प्रायोगिक भौतिकी ब्रह्माण्ड के बारे में आँकड़े संग्रहित करने के क्रम में भौतिक परिघटनाओं के प्रेक्षण से सम्बंधित विषय और उप-विषयों की श्रेणी है। इसकी विधियाँ एक विषय से दूसरे विषय में बहुत परिवर्तित होता है जैसे सरल प्रयोग से प्रेक्षण जैसे कैवेंडिश प्रयोग से बहुत जटिल प्रयोगों में से एक वृहद हेड्रॉन संघट्टक तक। .

नई!!: प्रोटॉन और प्रायोगिक भौतिकी · और देखें »

प्रोटियम

प्रोटियम हाइड्रोजन का सबसे प्रचुर मात्रा में उपलब्ध समस्थानिक होता है। इसमें मात्र एक प्रोटॉन ही होता है और न्यूट्रॉन अनुपस्थित होता है। यह मूल रूप से हाइड्रोजन परमाणु होता है। श्रेणी:हाइड्रोजन के समस्थानिक श्रेणी:नाभिकीय पदार्थ श्रेणी:रेडियोधर्मिता श्रेणी:रेडियोधर्मी ईंधन.

नई!!: प्रोटॉन और प्रोटियम · और देखें »

प्रोटॉन उत्सर्जन

The decay of a proton rich nucleus A populates excited states of a daughter nucleus B by β+ emission or electron capture (EC). Those excited states that lie below the separation energy for protons (Sp) decay by γ emission towards the groundstate of daughter B. For the higher excited states a competitive decay channel of proton emission to the granddaughter C exists, called β-delayed proton emission. प्रोटॉन उत्सर्जन (Proton emission या प्रोटॉन रेडियोसक्रियता) एक प्रकार की रेडियोसक्रिय क्षय है जिसमें नाभिक से प्रोटॉन उत्सर्जित होता है (निकलता है)। श्रेणी:नाभिकीय भौतिकी.

नई!!: प्रोटॉन और प्रोटॉन उत्सर्जन · और देखें »

प्लूटोनियम के समस्थानिक

मोटे अक्षर प्लूटोनियम के कोई भी स्थिर समस्थानिक उपलब्ध नहीं हैं। अतः कोई मानक परमाणु भार देना संभव नहीं है। .

नई!!: प्रोटॉन और प्लूटोनियम के समस्थानिक · और देखें »

पोजीट्रॉन

पाजीट्रोन (e+) या पोजीटिव इलेक्ट्रोन (धन आवेश युक्त इलेक्ट्रोन) परमाणु में पाया जाने वाला एक मौलिक कण है। यह धन आवेश युक्त इलेक्ट्रोन है। इसके गुण इलेक्ट्रोन के समान होते किन्तु दोनो में अंतर यह है कि इलेक्ट्रोन ऋण आवेश युक्त कण है तथा पोजीट्रोन धन आवेश युक्त कण है। इसका द्रव्यमान इलेक्ट्रोन के द्रव्यमान के समान होता है। इसकी खोज सन १९३२ में कार्ल डी एंडरसन ने की थी। इसका विद्युत आवेश +1.602176487(40)×10−19 कूलाम्ब होता है। इसकी घूर्णन गति आधी होती है। पोजिट्रोन को β+ चिन्ह से भी दर्शाते है। जब पोजिट्रोन तथा इलेक्ट्रोन की टक्कर होती है तो दोनो नष्ट हो जाते हैं और दो गामा किरण फोटान उत्पन्न होती है। चिकित्सालय में उपयोग होने वाले एक्स किरण में न्यूट्रोन, गामा किरण, प्रोटोन, न्यूट्रिनो, के साथ पोजिट्रोन भी शामिल रहता है। .

नई!!: प्रोटॉन और पोजीट्रॉन · और देखें »

फर्मिऑन

सांख्यिकीय व्यवहार के आधार पर भौतिकी में कणों को दो भागों में बांटा जाता है: बोसॉन एवं फर्मिऑन। फर्मिऑन (fermion):- वे कण जो फर्मी-डिराक सांख्यिकी के अनुसार व्यवहार करते है, जिनका प्रचक्रण विषम अर्ध पूर्णांक (१/२, ३/२, ----) होता है और जो पाउली अपवर्जन नियम का पालन करते है, फर्मिऑन कहलाते है। मूलकण क्वार्क और लेप्टॉन एवं संयोजित कण प्रोटॉन और न्यूट्रॉन इसके उदाहरण है। .

नई!!: प्रोटॉन और फर्मिऑन · और देखें »

फर्मी अन्योन्यक्रिया

कण भौतिकी में, फर्मी अन्योन्यक्रिया (Fermi's interaction) (जिसे बीटा क्षय का फर्मी सिद्धांत भी कहा जाता है) 1933 में एन्रीको फर्मी द्वारा प्रस्तावित बीटा क्षय की व्याख्या है। इस सिद्धान्त के अनुसार चार फर्मीऑन एक ही शीर्ष पर एक साथ अन्योन्य क्रिया करते हैं। उदाहरण के लिए, इस अन्योन्य क्रिया में न्यूट्रॉन का क्षय, न्यूट्रॉन के निम्न कणों से सीधे संयुग्मन में दर्शाया गया है.

नई!!: प्रोटॉन और फर्मी अन्योन्यक्रिया · और देखें »

बिग बैंग सिद्धांत

महाविस्फोट प्रतिरूप के अनुसार, यह ब्रह्मांड अति सघन और ऊष्म अवस्था से विस्तृत हुआ है और अब तक इसका विस्तार चालू है। एक सामान्य धारणा के अनुसार अंतरिक्ष स्वयं भी अपनी आकाशगंगाओं सहित विस्तृत होता जा रहा है। ऊपर दर्शित चित्र ब्रह्माण्ड के एक सपाट भाग के विस्तार का कलात्मक दृश्य है। ब्रह्मांड का जन्म एक महाविस्फोट के परिणामस्वरूप हुआ। इसी को महाविस्फोट सिद्धान्त या बिग बैंग सिद्धान्त कहते हैं।।अमर उजाला।। श्य़ामरत्न पाठक, तारा भौतिकविद, जिसके अनुसार से लगभग बारह से चौदह अरब वर्ष पूर्व संपूर्ण ब्रह्मांड एक परमाण्विक इकाई के रूप में था।।बीबीसी हिन्दी।। बीबीसी संवाददाता, लंदन:ममता गुप्ता और महबूब ख़ान उस समय मानवीय समय और स्थान जैसी कोई अवधारणा अस्तित्व में नहीं थी।।हिन्दुस्तान लाइव।।२७ अक्टूबर, २००९ महाविस्फोट सिद्धांत के अनुसार लगभग १३.७ अरब वर्ष पूर्व इस धमाके में अत्यधिक ऊर्जा का उत्सजर्न हुआ। यह ऊर्जा इतनी अधिक थी जिसके प्रभाव से आज तक ब्रह्मांड फैलता ही जा रहा है। सारी भौतिक मान्यताएं इस एक ही घटना से परिभाषित होती हैं जिसे महाविस्फोट सिद्धांत कहा जाता है। महाविस्फोट नामक इस महाविस्फोट के धमाके के मात्र १.४३ सेकेंड अंतराल के बाद समय, अंतरिक्ष की वर्तमान मान्यताएं अस्तित्व में आ चुकी थीं। भौतिकी के नियम लागू होने लग गये थे। १.३४वें सेकेंड में ब्रह्मांड १०३० गुणा फैल चुका था और क्वार्क, लैप्टान और फोटोन का गर्म द्रव्य बन चुका था। १.४ सेकेंड पर क्वार्क मिलकर प्रोटॉन और न्यूट्रॉन बनाने लगे और ब्रह्मांड अब कुछ ठंडा हो चुका था। हाइड्रोजन, हीलियम आदि के अस्तित्त्व का आरंभ होने लगा था और अन्य भौतिक तत्व बनने लगे थे। महाविस्फोट सिद्धान्त के आरंभ का इतिहास आधुनिक भौतिकी में जॉर्ज लिमेत्री ने लिखा हुआ है। लिमेत्री एक रोमन कैथोलिक पादरी थे और साथ ही वैज्ञानिक भी। उनका यह सिद्धान्त अल्बर्ट आइंसटीन के प्रसिद्ध सामान्य सापेक्षवाद के सिद्धांत पर आधारित था। महाविस्फोट सिद्धांत दो मुख्य धारणाओं पर आधारित होता है। पहला भौतिक नियम और दूसरा ब्रह्माण्डीय सिद्धांत। ब्रह्माण्डीय सिद्वांत के मुताबिक ब्रह्मांड सजातीय और समदैशिक (आइसोट्रॉपिक) होता है। १९६४ में ब्रिटिश वैज्ञानिक पीटर हिग्गस ने महाविस्फोट के बाद एक सेकेंड के अरबें भाग में ब्रह्मांड के द्रव्यों को मिलने वाले भार का सिद्धांत प्रतिपादित किया था, जो भारतीय वैज्ञानिक सत्येन्द्र नाथ बोस के बोसोन सिद्धांत पर ही आधारित था। इसे बाद में 'हिग्गस-बोसोन' के नाम से जाना गया। इस सिद्धांत ने जहां ब्रह्मांड की उत्पत्ति के रहस्यों पर से पर्दा उठाया, वहीं उसके स्वरूप को परिभाषित करने में भी मदद की।। दैट्स हिन्दी॥।१० सितंबर, २००८। इंडो-एशियन न्यूज सर्विस। .

नई!!: प्रोटॉन और बिग बैंग सिद्धांत · और देखें »

ब्रह्माण्ड किरण

ब्रह्माण्डीय किरण का उर्जा-स्पेक्ट्रम ब्रह्माण्ड किरणें (cosmic ray) अत्यधिक उर्जा वाले कण हैं जो बाहरी अंतरिक्ष में पैदा होते हैं और छिटक कर पृथ्वी पर आ जाते हैं। लगभग ९०% ब्रह्माण्ड किरण (कण) प्रोटॉन होते हैं; लगभग १०% हिलियम के नाभिक होते हैं; तथा १% से कम ही भारी तत्व तथा इलेक्ट्रॉन (बीटा मिनस कण) होते हैं। वस्तुत: इनको "किरण" कहना ठीक नहीं है क्योंकि धरती पर पहुँचने वाले ब्रह्माण्डीय कण अकेले होते हैं न कि किसी पुंज या किरण के रूप में। .

नई!!: प्रोटॉन और ब्रह्माण्ड किरण · और देखें »

बेर्यॉन

बेर्यॉन (baryon):- वे संयोजित कण जो तीन क्वार्क (qqq) से मिलकर बने होते है बेर्यॉन कहलाते है। प्रोटॉन (uud), न्यूट्रॉन (udd), लाम्बडा (uds) और ओमेगा (sss) इसके उदाहरण है। प्रकृति में लगभग १२० प्रकार के बेर्यॉन पाये जाते है।.

नई!!: प्रोटॉन और बेर्यॉन · और देखें »

बोसॉन

बोसॉन (Boson):- वे कण जो बोस-आइंस्टीन साँख्यिकी का पालन करते है और जिनकी प्रचक्रण (०,१,२,---) होती है, बोसॉन कहलाते है। मूलभूत बलो को संजोकर रखने वाले सभी उर्जा वाहक कण (फोटॉन, ग्लुऑन, गेज बोसॉन) बोसॉन होते है। वे संयोजित कण जिनमे फर्मिऑन की संख्या सम होती है, बोसॉन कहलाते है, उदाहरण - मेसॉन। किसी भी परमाणु का नाभिक फर्मिऑन है अथवा बोसॉन, यह इस बात पर निर्भर करता है कि उसमें मौजूद प्रोटॉन व न्यूट्रॉन का योग सम है अथवा विषम। शीत हीलियम, जिसकी श्यानता (viscosity) शून्य होती है, का विचित्र व्यवहार होता है कि यह अपने में आरपार आ जा सकता है। इसका यह व्यवहार बोसॉनिक गुण के कारण होता है, चूंकि इसका नाभिक बोसॉन होता है और पॉली एक्सक्ल्युसन सिद्धान्त का पालन करने बाध्य नहीं होता इसलीए यह अपने में आरपार गुजर सकता है। भौतिक शास्त्र में दो प्रकार के अणु माने जाते हैं - बोसॉन और फर्मियान। इनमे से बोसॉन सत्येन्द्र नाथ बसु के नाम पर ही हैं। श्रेणी:भौतिकी * श्रेणी:क्वांटम क्षेत्र सिद्धांत श्रेणी:परमाणु भौतिकी श्रेणी:संघनित द्रव्य भौतिकी.

नई!!: प्रोटॉन और बोसॉन · और देखें »

मैग्नेशियम के समस्थानिक

मैग्नीशियम (Mg)मानक आण्विक द्रव्यमान:२४.३०५० (6) आण्विक इकाई .

नई!!: प्रोटॉन और मैग्नेशियम के समस्थानिक · और देखें »

मूलभूत भौतिक नियतांक

भौतिकी में बहुत नियतांक ऐसे हैं, जिनके बारे में वैज्ञानिकों का ऐसा विश्वास है कि समय के साथ साथ उनमें कोई परिवर्तन नहीं होता। इन नियंताकों को भौतिकी के मौलिक नियतांक (Fundamental physical constants) कहते हैं। हमारी चुनी हुई मौलिक इकाइयों के अनुसार इनका मान जो कुछ है, सर्वदा वही रहेगा। ऐसे नियतांकों के कुछ उदाहरण ये हैं: प्रकाश का वेग, अर्थात् वह वेग जिससे प्रकाश की तरंगों का संचरण शून्याकाश (space) में होता है; इलेक्ट्रॉन का आवेश; सर्वव्यापी गुरूत्वाकर्षण का नियतांक, अर्थात् वह बल जिससे एक सेंटीमीटर की दूरी पर रखे एक ग्राम के दो पिंड एक दूसरे को आकर्षित करते हैं; ऊष्मागतिकी पैमाने पर बर्फ विंदु, अर्थात् बर्फ के पिघलने का ताप आदि। कुछ मूलभूत भौतिक नियतांक ऐसे भी हैं जिनका संख्यात्मक मान सभी मात्रक प्रणालियों (system of units) में समान होता है; इन्हें विमारहित भौतिक नियतांक (Dimensionless physical constant) कहते हैं। .

नई!!: प्रोटॉन और मूलभूत भौतिक नियतांक · और देखें »

मोटर वाहन उद्योग

कार की असेम्बली लाइन विश्व में मोटर वाहनों का उत्पादन जो १९०० में ९५०० था वह २०१५ में १० करोड़ हो गया। मोटर वाहन उद्योग मोटर वाहनों की डिज़ाइन, विकास, विनिर्माण, विपणन और विक्रय करता है। 2008 के दौरान, विश्व भर में 70 मिलियन से भी ज़्यादा मोटर वाहनों का निर्माण किया गया, जिनमें कार और वाणिज्यिक वाहन भी शामिल हैं। 2007 में, कुल 79.9 मिलियन नए वाहन दुनिया भर में बेचे गए: यूरोप में 22.9 मिलियन, एशिया-पैसेफ़िक क्षेत्र में 21.4 मिलियन, संयुक्त राज्य अमेरिका और कनाडा में 1.94 मिलियन, लातिन अमेरिका, में 4.4 मिलियन, मध्य पूर्व में 2.4 मिलियन और अफ़्रीका में 1.4 मिलियन.

नई!!: प्रोटॉन और मोटर वाहन उद्योग · और देखें »

रसायन विज्ञान का इतिहास

रसायन विज्ञान का इतिहास बहुत पुराना है। १००० ईसापूर्व में प्राचीन सभ्यताओं के लोग ऐसी प्राविधियों काo.

नई!!: प्रोटॉन और रसायन विज्ञान का इतिहास · और देखें »

रासायनिक तत्व

रासायनिक तत्वों की आवर्त सारणी रासायनिक तत्व (या केवल तत्व) ऐसे उन शुद्ध पदार्थों को कहते हैं जो केवल एक ही तरह के परमाणुओं से बने होते हैं। या जो ऐसे परमाणुओं से बने होते हैं जिनके नाभिक में समान संख्या में प्रोटॉन होते हैं। सभी रासायनिक पदार्थ तत्वों से ही मिलकर बने होते हैं। हाइड्रोजन, नाइट्रोजन, आक्सीजन, तथा सिलिकॉन आदि कुछ तत्व हैं। सन २००७ तक कुल ११७ तत्व खोजे या पाये जा चुके हैं जिसमें से ९४ तत्व धरती पर प्राकृतिक रूप से विद्यमान हैं। कृत्रिम नाभिकीय अभिक्रियाओं के परिणामस्वरूप उच्च परमाणु क्रमांक वाले तत्व समय-समय पर खोजे जाते रहे हैं। .

नई!!: प्रोटॉन और रासायनिक तत्व · और देखें »

लार्ज हैड्रॉन कोलाइडर

लार्ज हैड्रॉन कोलाइडर या वृहद हैड्रॉन संघट्टक (Large Hadron Collider; LHC के रूप में संक्षेपाक्षरित) विश्व का सबसे विशाल और शक्तिशाली कण त्वरक है। यह सर्न की महत्वाकांक्षी परियोजना है। यह जेनेवा के समीप फ़्रान्स और स्विट्ज़रलैण्ड की सीमा पर ज़मीन के नीचे स्थित है। इसकी रचना २७ किलोमीटर परिधि वाले एक छल्ले-नुमा सुरंग में हुई है, जिसे आम भाषा में लार्ड ऑफ द रिंग कहा जा रहा है। इसी सुरंग में इस त्वरक के चुम्बक, संसूचक (डिटेक्टर), बीम-लाइन एवं अन्य उपकरण लगे हैं। सुरंग के अन्दर दो बीम पाइपों में दो विपरीत दिशाओं से आ रही ७ TeV (टेरा एले़ट्रान वोल्ट्) की प्रोट्रॉन किरण-पुंजों (बीम) को आपस में संघट्ट (टक्कर) किया जायेगा जिससे वही स्थिति उत्पन्न की जायेगी जो ब्रह्माण्ड की उत्पत्ति के समय बिग बैंग के रूप में हुई थी। ग्यातव्य है कि ७ TeV उर्जा वाले प्रोटॉन का वेग प्रकाश के वेग के लगभग बराबर होता है। एल एच सी की सहायता से किये जाने वाले प्रयोगों का मुख्य उद्देश्य स्टैन्डर्ड मॉडेल की सीमाओं एवं वैधता की जाँच करना है। स्टैन्डर्ड मॉडेल इस समय कण-भौतिकी का सबसे आधुनिक सैद्धान्तिक व्याख्या या मॉडल है। १० सितंबर २००८ को पहली बार इसमें सफलता पूर्वक प्रोटान धारा प्रवाहित की गई। इस परियोजना में विश्व के ८५ से अधिक देशों नें अपना योगदान किया है। परियोजना में ८००० भौतिक वैज्ञानिक कार्य कर रहे हैं जो विभिन्न देशों, या विश्वविद्यालयों से आए हैं। प्रोटॉन बीम को त्वरित (accelerate) करने के लिये इसके कुछ अवयवों (जैसे द्विध्रुव (डाइपोल) चुम्बक, चतुर्ध्रुव (quadrupole) चुमबक आदि) का तापमान लगभग 1.90केल्विन या -२७१.२५0सेन्टीग्रेड तक ठंडा करना आवश्यक होता है ताकि जिन चालकों (conductors) में धारा बहती है वे अतिचालकता (superconductivity) की अवस्था में आ जांय और ये चुम्बक आवश्यक चुम्बकीय क्षेत्र उत्पन्न कर सकें।"".

नई!!: प्रोटॉन और लार्ज हैड्रॉन कोलाइडर · और देखें »

लुई द ब्रॉई

लुई द ब्रॉई लुई द ब्रॉई (फ़्रांसिसी: Louis de Broglie, जन्म: १५ अगस्त १८९२, देहांत: १९ मार्च १९८७) एक फ़्रांसिसी भौतिकी वैज्ञानिक और नोबेल पुरस्कार विजेता थे। उन्होंने १९२४ में सारे पदार्थों के तरंग-कण द्विरूप होने का दावा किया था और उसके लिए गणित विकसित किया था। यह भविष्यवाणी आगे चलकर प्रयोगों में सिद्ध हो गयी। इनके नाम को भारतीय उपमहाद्वीप में अक्सर "लुई दि ब्रॉग्ली" उच्चारित किया जाता है, जो वास्तव में सही उच्चारण नहीं है। .

नई!!: प्रोटॉन और लुई द ब्रॉई · और देखें »

समस्थानिक

समस्थानिक (फ्रेंच, अंग्रेज़ी: Isotope, जर्मन: Isotop, पुर्तगाली, स्पेनिश: Isótopo) एक ही तत्व के परमाणु जिनकी परमाणु संख्या समान होती हैं, परन्तु भार अलग-अलग होता है, उन्हें समस्थानिक कहा जाता है। इनमें प्रत्येक परमाणु में समान प्रोटोन होते हैं। जबकि न्यूट्रॉन की संख्या अलग अलग रहती है। इस कारण परमाणु संख्या तो समान रहती है, लेकिन परमाणु का द्रव्यमान अलग अलग हो जाता है। समस्थानिक का अर्थ "समान स्थान" से है। आवर्त सारणी में तत्वों को परमाणु संख्या के आधार पर अलग अलग रखा जाता है, जबकि समस्थानिक में परमाणु संख्या के समान रहने के कारण उन्हें अलग नहीं किया गया है, इस कारण इन्हें समस्थानिक कहा जाता है। परमाणु के नाभिक के भीतर प्रोटोन की संख्या को परमाणु संख्या कहा जाता है, जो बिना आयन वाले परमाणु के इलेक्ट्रॉन के बराबर होते हैं। प्रत्येक परमाणु संख्या किसी विशिष्ट तत्व की पहचान बताता है, लेकिन ऐसा समस्थानिक में नहीं होता है। इसमें किसी तत्व के परमाणु में न्यूट्रॉन की संख्या विस्तृत हो सकती है। प्रोटोन और न्यूट्रॉन की संख्या उस परमाणु का द्रव्यमान संख्या होता है और प्रत्येक समस्थानिक में द्रव्यमान संख्या अलग अलग होता है। उदाहरण के लिए, कार्बन के तीन समस्थानिक कार्बन-12, कार्बन-13 और कार्बन-14 हैं। इनमें सभी का द्रव्यमान संख्या क्रमशः 12, 13 और 14 है। कार्बन में 6 परमाणु होता है, जिसका मतलब है कि कार्बन के सभी परमाणु में 6 प्रोटोन होते हैं और न्यूट्रॉन की संख्या क्रमशः 6, 7 और आठ है। .

नई!!: प्रोटॉन और समस्थानिक · और देखें »

सौर पवन

प्लाज़्मा हेलियोपॉज़ से संगम करते हुए सौर वायु (अंग्रेज़ी:सोलर विंड) सूर्य से बाहर वेग से आने वाले आवेशित कणों या प्लाज़्मा की बौछार को नाम दिया गया है। ये कण अंतरिक्ष में चारों दिशाओं में फैलते जाते हैं।। हिन्दुस्तान लाइव। २७ नवम्बर २००९ इन कणों में मुख्यतः प्रोटोन्स और इलेक्ट्रॉन (संयुक्त रूप से प्लाज़्मा) से बने होते हैं जिनकी ऊर्जा लगभग एक किलो इलेक्ट्रॉन वोल्ट (के.ई.वी) हो सकती है। फिर भी सौर वायु प्रायः अधिक हानिकारक या घातक नहीं होती है। यह लगभग १०० ई.यू (खगोलीय इकाई) के बराबर दूरी तक पहुंचती हैं। खगोलीय इकाई यानि यानि एस्ट्रोनॉमिकल यूनिट्स, जो पृथ्वी से सूर्य के बीच की दूरी के बराबर परिमाण होता है। १०० ई.यू की यह दूरी सूर्य से वरुण ग्रह के समान है जहां जाकर यह अंतरतारकीय माध्यम (इंटरस्टेलर मीडियम) से टकराती हैं। अमेरिका के सैन अंटोनियो स्थित साउथ वेस्ट रिसर्च इंस्टिट्यूट के कार्यपालक निदेशक डेव मैक्कोमास के अनुसार सूर्य से लाखों मील प्रति घंटे के वेग से चलने वाली ये वायु सौरमंडल के आसपास एक सुरक्षात्मक बुलबुला निर्माण करती हैं। इसे हेलियोस्फीयर कहा जाता है। यह पृथ्वी के वातावरण के साथ-साथ सौर मंडल की सीमा के भीतर की दशाओं को तय करती हैं।। नवभारत टाइम्स। २४ सितंबर २००८ हेलियोस्फीयर में सौर वायु सबसे गहरी होती है। पिछले ५० वर्षों में सौर वायु इस समय सबसे कमजोर पड़ गई हैं। वैसे सौर वायु की सक्रियता समय-समय पर कम या अधिक होती रहती है। यह एक सामान्य प्रक्रिया है। .

नई!!: प्रोटॉन और सौर पवन · और देखें »

सूर्य

सूर्य अथवा सूरज सौरमंडल के केन्द्र में स्थित एक तारा जिसके चारों तरफ पृथ्वी और सौरमंडल के अन्य अवयव घूमते हैं। सूर्य हमारे सौर मंडल का सबसे बड़ा पिंड है और उसका व्यास लगभग १३ लाख ९० हज़ार किलोमीटर है जो पृथ्वी से लगभग १०९ गुना अधिक है। ऊर्जा का यह शक्तिशाली भंडार मुख्य रूप से हाइड्रोजन और हीलियम गैसों का एक विशाल गोला है। परमाणु विलय की प्रक्रिया द्वारा सूर्य अपने केंद्र में ऊर्जा पैदा करता है। सूर्य से निकली ऊर्जा का छोटा सा भाग ही पृथ्वी पर पहुँचता है जिसमें से १५ प्रतिशत अंतरिक्ष में परावर्तित हो जाता है, ३० प्रतिशत पानी को भाप बनाने में काम आता है और बहुत सी ऊर्जा पेड़-पौधे समुद्र सोख लेते हैं। इसकी मजबूत गुरुत्वाकर्षण शक्ति विभिन्न कक्षाओं में घूमते हुए पृथ्वी और अन्य ग्रहों को इसकी तरफ खींच कर रखती है। सूर्य से पृथ्वी की औसत दूरी लगभग १४,९६,००,००० किलोमीटर या ९,२९,६०,००० मील है तथा सूर्य से पृथ्वी पर प्रकाश को आने में ८.३ मिनट का समय लगता है। इसी प्रकाशीय ऊर्जा से प्रकाश-संश्लेषण नामक एक महत्वपूर्ण जैव-रासायनिक अभिक्रिया होती है जो पृथ्वी पर जीवन का आधार है। यह पृथ्वी के जलवायु और मौसम को प्रभावित करता है। सूर्य की सतह का निर्माण हाइड्रोजन, हिलियम, लोहा, निकेल, ऑक्सीजन, सिलिकन, सल्फर, मैग्निसियम, कार्बन, नियोन, कैल्सियम, क्रोमियम तत्वों से हुआ है। इनमें से हाइड्रोजन सूर्य के सतह की मात्रा का ७४ % तथा हिलियम २४ % है। इस जलते हुए गैसीय पिंड को दूरदर्शी यंत्र से देखने पर इसकी सतह पर छोटे-बड़े धब्बे दिखलाई पड़ते हैं। इन्हें सौर कलंक कहा जाता है। ये कलंक अपने स्थान से सरकते हुए दिखाई पड़ते हैं। इससे वैज्ञानिकों ने निष्कर्ष निकाला है कि सूर्य पूरब से पश्चिम की ओर २७ दिनों में अपने अक्ष पर एक परिक्रमा करता है। जिस प्रकार पृथ्वी और अन्य ग्रह सूरज की परिक्रमा करते हैं उसी प्रकार सूरज भी आकाश गंगा के केन्द्र की परिक्रमा करता है। इसको परिक्रमा करनें में २२ से २५ करोड़ वर्ष लगते हैं, इसे एक निहारिका वर्ष भी कहते हैं। इसके परिक्रमा करने की गति २५१ किलोमीटर प्रति सेकेंड है। Barnhart, Robert K. (1995) The Barnhart Concise Dictionary of Etymology, page 776.

नई!!: प्रोटॉन और सूर्य · और देखें »

हाइड्रोजन

हाइड्रोजन पानी का एक महत्वपूर्ण अंग है शुद्ध हाइड्रोजन से भरी गैस डिस्चार्ज ट्यूब हाइड्रोजन (उदजन) (अंग्रेज़ी:Hydrogen) एक रासायनिक तत्व है। यह आवर्त सारणी का सबसे पहला तत्व है जो सबसे हल्का भी है। ब्रह्मांड में (पृथ्वी पर नहीं) यह सबसे प्रचुर मात्रा में पाया जाता है। तारों तथा सूर्य का अधिकांश द्रव्यमान हाइड्रोजन से बना है। इसके एक परमाणु में एक प्रोट्रॉन, एक इलेक्ट्रॉन होता है। इस प्रकार यह सबसे सरल परमाणु भी है। प्रकृति में यह द्विआण्विक गैस के रूप में पाया जाता है जो वायुमण्डल के बाह्य परत का मुख्य संघटक है। हाल में इसको वाहनों के ईंधन के रूप में इस्तेमाल कर सकने के लिए शोध कार्य हो रहे हैं। यह एक गैसीय पदार्थ है जिसमें कोई गंध, स्वाद और रंग नहीं होता है। यह सबसे हल्का तत्व है (घनत्व 0.09 ग्राम प्रति लिटर)। इसकी परमाणु संख्या 1, संकेत (H) और परमाणु भार 1.008 है। यह आवर्त सारणी में प्रथम स्थान पर है। साधारणतया इससे दो परमाणु मिलकर एक अणु (H2) बनाते है। हाइड्रोजन बहुत निम्न ताप पर द्रव और ठोस होता है।।इण्डिया वॉटर पोर्टल।०८-३०-२०११।अभिगमन तिथि: १७-०६-२०१७ द्रव हाइड्रोजन - 253° से.

नई!!: प्रोटॉन और हाइड्रोजन · और देखें »

हाइड्रोजन परमाणु

हाइड्रोजन परमाणु रासायनिक तत्व हाइड्रोजन का एक परमाणु है। विद्युत तटस्थ परमाणु में एक सकारात्मक चार्ज प्रोटॉन होता है और एक एकल नकारात्मक आरोप लगाया इलेक्ट्रॉन जो कूल्ब बल द्वारा नाभिक के लिए बाध्य है। परमाणु हाइड्रोजन ब्रह्मांड के मूलभूत (बेरोनिक) द्रव्यमान का लगभग 75% है। पृथ्वी पर रोज़मर्रा की जिंदगी में, पृथक हाइड्रोजन परमाणु (आमतौर पर "परमाणु हाइड्रोजन" या अधिक सटीक, "मोनैटॉमिक हाइड्रोजन" कहा जाता है) अत्यंत दुर्लभ हैं। इसके बजाय, हाइड्रोजन यौगिकों में अन्य परमाणुओं के साथ संयोजित होता है, या स्वयं के साथ सामान्य (डायटोमिक) हाइड्रोजन गैस, एच 2 का निर्माण करता है। साधारण अंग्रेज़ी उपयोग में "परमाणु हाइड्रोजन" और "हाइड्रोजन परमाणु" अतिव्यापी है, फिर भी अलग, अर्थ। उदाहरण के लिए, एक पानी के अणु में दो हाइड्रोजन परमाणु होते हैं, लेकिन इसमें परमाणु हाइड्रोजन नहीं होता है (जो पृथक हाइड्रोजन परमाणुओं को संदर्भित करेगा)। हाइड्रोजन परमाणु की सैद्धांतिक समझ विकसित करने के प्रयास क्वांटम यांत्रिकी के इतिहास के लिए महत्वपूर्ण हैं। .

नई!!: प्रोटॉन और हाइड्रोजन परमाणु · और देखें »

हाइड्रोजन के समस्थानिक

प्रोटियम, हाइड्रोजन का प्रचुरतम उपलब्ध समस्थानिक; में एक प्रोटोन व एक इलेक्ट्रॉन होता है हाइड्रोजन या उदजन (H) (मानक परमाणु भार: 1.00794(7) u) के तीन प्राकृतिक उपलब्ध हाइड्रोजन.

नई!!: प्रोटॉन और हाइड्रोजन के समस्थानिक · और देखें »

हिदेकी युकावा

हिदेकी युकावा हिदेकी युकावा (湯川 秀樹; २३ जनवरी १९०७ - ८ सितंबर १९८१) एक सैद्धांतिक भौतिक वैज्ञानिक एवं नोबेल पुरस्कार प्राप्त करने वाले जापानी थे। .

नई!!: प्रोटॉन और हिदेकी युकावा · और देखें »

हिलियम-३

हिलियम पदार्थ का दुर्लभ समस्थानिक। इसमें २ प्रोटान और एक न्यूट्रॉन होते हैं। यह रेडियोधर्मी नहीं होता है। श्रेणी:हिलियम श्रेणी:नाभिकीय संलयन ईन्धन.

नई!!: प्रोटॉन और हिलियम-३ · और देखें »

हिलियम-४

हिलियम पदार्थ का सबसे आम समस्थानिक। इसमें २ प्रोटान और दो न्यूटॉन होते हैं। यह रेडियोधर्मी नहीं होता है। श्रेणी:हिलियम.

नई!!: प्रोटॉन और हिलियम-४ · और देखें »

हेड्रॉन

हेड्रॉन(hadron):- वे सभी कण जो क्वार्क से मिलकर बने होते है हेड्रॉन कहलाते हैं। परमाणु नाभिक, न्यूक्लिऑन, प्रोटॉन, न्यूट्रॉन, मेसॉन, क्वार्क आदि इसके उदाहरण है। श्रेणी:भौतिकी श्रेणी:कण भौतिकी.

नई!!: प्रोटॉन और हेड्रॉन · और देखें »

जल (अणु)

जल पृथ्वी की सतह पर सर्वाधिक मात्रा में पाया जाने वाला अणु है, जो इस ग्रह की सतह के 70% का गठन करता है। प्रकृति में यह तरल, ठोस और गैसीय अवस्था में मौजूद है। मानक दबावों और तापमान पर यह तरल और गैस अवस्थाओं के बीच गतिशील संतुलन में रहता है। घरेलू तापमान पर, यह तरल रूप में हल्की नीली छटा वाला बेरंग, बेस्वाद और बिना गंध का होता है। कई पदार्थ, जल में घुल जाते हैं और इसे सामान्यतः सार्वभौमिक विलायक के रूप में सन्दर्भित किया जाता है। इस वजह से, प्रकृति में मौजूद जल और प्रयोग में आने वाला जल शायद ही कभी शुद्ध होता है और उसके कुछ गुण, शुद्ध पदार्थ से थोड़ा भिन्न हो सकते हैं। हालांकि, ऐसे कई यौगिक हैं जो कि अनिवार्य रूप से, अगर पूरी तरह नहीं, जल में अघुलनशील है। जल ही ऐसी एकमात्र चीज़ है जो पदार्थ की सामान्य तीन अवस्थाओं में स्वाभाविक रूप से पाया जाता है - अन्य चीज़ों के लिए रासायनिक गुण देखें. पृथ्वी पर जीवन के लिए जल आवश्यक है। जल आम तौर पर, मानव शरीर के 55% से लेकर 78% तक का निर्माण करता है। .

नई!!: प्रोटॉन और जल (अणु) · और देखें »

विचित्र पदार्थ

भौतिकी में विचित्र पदार्थ (exotic matter, ऍक्ज़ोटिक मैटर) ऐसा कोई पदार्थ होता है जिसमें आधारण पदार्थ की तुलना में कोई विचित्र गुण हो। साधारण पदार्थ उप-परमाणु स्तर पर बैरयॉनों का बना होता है, मसलन प्रोटॉन, न्युट्रॉन, इत्यादि। इसलिए विचित्र पदार्थों की एक परिभाषा यह भी है कि इनकी रचना ग़ैर-बैरयॉन कणों से हुई होती है। श्याम पदार्थ, ऋण-द्रव्यमान (negative mass, यानि शून्य से कम द्रव्यमान रखने वाला पदार्थ) और सम्मिश्र द्रव्यमान (complex mass, जिसका द्रव्यमान सम्मिश्र संख्या हो) इसके कुछ उदाहरण हैं। .

नई!!: प्रोटॉन और विचित्र पदार्थ · और देखें »

आयन

आयन (ion) ऐसे परमाणु या अणु है जिसमें इलेक्ट्रानों और प्रोटोनों की संख्या असामान होती है। इस से आयन में विद्युत आवेश (चार्ज) होता है। अगर इलेक्ट्रॉन की तादाद प्रोटोन से अधिक हो तो आयन में ऋणात्मक (नेगेटिव) आवेश होता है और उसे ऋणायन (anion, ऐनायन) भी कहते हैं। इसके विपरीत अगर इलेक्ट्रॉन की तादाद प्रोटोन से कम हो तो आयन में धनात्मक (पोज़िटिव) आवेश होता है और उसे धनायन (cation, कैटायन) भी कहते हैं। .

नई!!: प्रोटॉन और आयन · और देखें »

इलेक्ट्रॉन

इलेक्ट्रॉन या विद्युदणु (प्राचीन यूनानी भाषा: ἤλεκτρον, लैटिन, अंग्रेज़ी, फ्रेंच, स्पेनिश: Electron, जर्मन: Elektron) ऋणात्मक वैद्युत आवेश युक्त मूलभूत उपपरमाणविक कण है। यह परमाणु में नाभिक के चारो ओर चक्कर लगाता हैं। इसका द्रव्यमान सबसे छोटे परमाणु (हाइड्रोजन) से भी हजारगुना कम होता है। परम्परागत रूप से इसके आवेश को ऋणात्मक माना जाता है और इसका मान -१ परमाणु इकाई (e) निर्धारित किया गया है। इस पर 1.6E-19 कूलाम्ब परिमाण का ऋण आवेश होता है। इसका द्रव्यमान 9.11E−31 किग्रा होता है जो प्रोटॉन के द्रव्यमान का लगभग १८३७ वां भाग है। किसी उदासीन परमाणु में विद्युदणुओं की संख्या और प्रोटानों की संख्या समान होती है। इनकी आंतरिक संरचना ज्ञात नहीं है इसलिए इसे प्राय:मूलभूत कण माना जाता है। इनकी आंतरिक प्रचक्रण १/२ होती है, अतः यह फर्मीय होते हैं। इलेक्ट्रॉन का प्रतिकणपोजीट्रॉन कहलाता है। द्रव्यमान के अलावा पोजीट्रॉन के सारे गुण यथा आवेश इत्यादि इलेक्ट्रॉन के बिलकुल विपरीत होते हैं। जब इलेक्ट्रॉन और पोजीट्रॉन की टक्कर होती है तो दोंनो पूर्णतः नष्ट हो जाते हैं एवं दो फोटॉन उत्पन्न होती है। इलेक्ट्रॉन, लेप्टॉन परिवार के प्रथम पीढी का सदस्य है, जो कि गुरुत्वाकर्षण, विद्युत चुम्बकत्व एवं दुर्बल प्रभाव सभी में भूमिका निभाता है। इलेक्ट्रॉन कण एवं तरंग दोनो तरह के व्यवहार प्रदर्शित करता है। बीटा-क्षय के रूप में यह कण जैसा व्यवहार करता है, जबकि यंग का डबल स्लिट प्रयोग (Young's double slit experiment) में इसका किरण जैसा व्यवहार सिद्ध हुआ। चूंकि इसका सांख्यिकीय व्यवहार फर्मिऑन होता है और यह पॉली एक्सक्ल्युसन सिध्दांत का पालन करता है। आइरिस भौतिकविद जॉर्ज जॉनस्टोन स्टोनी (George Johnstone Stoney) ने १८९४ में एलेक्ट्रों नाम का सुझाव दिया था। विद्युदणु की कण के रूप में पहचान १८९७ में जे जे थॉमसन (J J Thomson) और उनकी विलायती भौतिकविद दल ने की थी। कइ भौतिकीय घटनाएं जैसे-विध्युत, चुम्बकत्व, उष्मा चालकता में विद्युदणु की अहम भूमिका होती है। जब विद्युदणु त्वरित होता है तो यह फोटान के रूप मेंऊर्जा का अवशोषण या उत्सर्जन करता है।प्रोटॉन व न्यूट्रॉन के साथ मिलकर यह्परमाणु का निर्माण करता है।परमाणु के कुल द्रव्यमान में विद्युदणु का हिस्सा कम से कम् 0.0६ प्रतिशत होता है। विद्युदणु और प्रोटॉन के बीच लगने वाले कुलाम्ब बल (coulomb force) के कारण विद्युदणु परमाणु से बंधा होता है। दो या दो से अधिक परमाणुओं के विद्युदणुओं के आपसी आदान-प्रदान या साझेदारी के कारण रासायनिक बंध बनते हैं। ब्रह्माण्ड में अधिकतर विद्युदणुओं का निर्माण बिग-बैंग के दौरान हुआ है, इनका निर्माण रेडियोधर्मी समस्थानिक (radioactive isotope) से बीटा-क्षय और अंतरिक्षीय किरणो (cosmic ray) के वायुमंडल में प्रवेश के दौरान उच्च ऊर्जा टक्कर के कारण भी होता है।.

नई!!: प्रोटॉन और इलेक्ट्रॉन · और देखें »

कण भौतिकी

कण भौतिकी, भौतिकी की एक शाखा है जिसमें मूलभूत उप परमाणविक कणो के पारस्परिक संबन्धो तथा उनके अस्तित्व का अध्ययन किया जाता है, जिनसे पदार्थ तथा विकिरण निर्मित हैं। हमारी अब तक कि समझ के अनुसार कण क्वांटम क्षेत्रों के उत्तेजन (excitations) हैं। दूसरे कणों के साथ इनकी अन्तःक्रिया की अपनी गतिकी है। कण भौतिकी के क्षेत्र में अधिकांश रुचि मूलभूत क्षेत्रों (fundamental fields) में है। मौलिक क्षेत्रों और उनकी गतिशीलताओ के सार को सिद्धान्त के रूप में प्रस्तुत किया गया है। इसिलिये कण भौतिकी में अधिकतर स्टैंडर्ड मॉडल (Standard Model) के मूल कणों तथा उनके सम्भावित विस्तार के बारे में अध्यन किया जाता है। .

नई!!: प्रोटॉन और कण भौतिकी · और देखें »

कणाभ

भौतिकी में कणाभ (Quasiparticle) उन्मज्जी संवृति है जो स्थूल रूप से एक जटिल प्रणाली है जैसे एक ठोस का व्यवहार जिसमें कि मुक्त आकाश में दुर्बल अन्योन्य क्रिया करने वाले भिन्न कण हों। उदाहरण के लिए इलेक्ट्रॉन किसी अर्धचालक में गति करता है तो अन्य इलेक्ट्रोनों और नाभिक से टक्करों के कारण इसकी गति जटिल रूप से पथित होती है लेकिन यह लगभग उसी तरह व्यवहार करता है जैसे भिन्न द्रव्यमान का कोई इलेक्ट्रॉन व्यवधान रहित मुक्त आकाश में गति करता है। भिन्न द्रव्यमान के इस "इलेक्ट्रॉन" को "इलेक्ट्रॉन कणाभ" कहते हैं। .

नई!!: प्रोटॉन और कणाभ · और देखें »

कार्बन-१२

कार्बन-१२ कार्बन के प्रचुर उपलब्ध दो स्थिर समस्थानिकों में से एक है। यह कुल प्रांगार मात्रा का ९८.९% है। इसके नाभि में ६ प्रोटोन और ६ न्यूट्रॉन हैं। इनके बाहर ६ इलेक्ट्रॉन रहते हैं। .

नई!!: प्रोटॉन और कार्बन-१२ · और देखें »

कार्बन-१४

accessdate.

नई!!: प्रोटॉन और कार्बन-१४ · और देखें »

क्लोरीन के समस्थानिक

क्लोरीन, तत्वों की आवर्त सारणी में 17 तत्व के लिए इलेक्ट्रॉन खोल आरेख। क्लोरीन (Cl) के समस्थानिक भार संख्या ३२ g.mol−1 से ४० g mol−1 तक होते हैं। स्थिर समस्थानिकों 35Cl (75.77%) एवं 37Cl (24.23%) की दो सारणियां होती हैं, जिन्हें ३:१ के अनुपात में पाया जाता हाई। इनके कारण क्लोरीन परमाणु का थोक भार ३५.५ होता है मानक परमाणु भार: ३५.४५३(२) ए.एम.यू.

नई!!: प्रोटॉन और क्लोरीन के समस्थानिक · और देखें »

क्वार्क

प्रोटॉन क्वार्क एक प्राथमिक कण है तथा यह पदार्थ का मूल घटक है। क्वार्क एकजुट होकर सम्मिश्र कण हेड्रॉन बनाते है, परमाणु नाभिक के मुख्य अवयव प्रोटॉन व न्यूट्रॉन इनमें से सर्वाधिक स्थिर हैं। नैसर्गिक घटना रंग बंधन के कारण, क्वार्क ना कभी सीधे प्रेक्षित हुआ या एकांत में पाया गया; वे केवल हेड्रॉनों के भीतर पाये जा सकते है, जैसे कि बेरिऑनों (उदाहरणार्थ: प्रोटान और न्यूट्रान) और मेसॉनों के रूप में। क्वार्क के अनेक आंतरिक गुण है, जिनमे विद्युत आवेश, द्रव्यमान, रंग आवेश और स्पिन सम्मिलित है। कण भौतिकी के मानक मॉडल में क्वार्क एकमात्र प्राथमिक कण है जो सभी चार मूलभूत अंतःक्रिया या मौलिक बलों (विद्युत चुंबकत्व, गुरुत्वाकर्षण, प्रबल अंतःक्रिया और दुर्बल अंतःक्रिया) को महसूस करता है, साथ ही यह मात्र ज्ञात कण है जिसका विद्युत आवेश प्राथमिक आवेश का पूर्णांक गुणनफल नहीं है। क्वार्क के छह प्रकार है, जो जाने जाते है फ्लेवर से: अप, डाउन, स्ट्रेन्ज, चार्म, टॉप और बॉटम। अप व डाउन क्वार्क के द्रव्यमान सभी क्वार्को में सबसे कम है। अपेक्षाकृत भारी क्वार्क कणिका क्षय की प्रक्रिया के माध्यम से तीव्रता से अप व डाउन क्वार्क में बदल जाते हैं। कणिका क्षय, एक उच्च द्रव्य अवस्था का एक निम्न द्रव्य अवस्था में परिवर्तन है। इस वजह से, अप व डाउन क्वार्क आम तौर पर स्थिर होते है और ब्रह्मांड में सबसे आम हैं, वहीं स्ट्रेन्ज, चार्म, बॉटम और टॉप क्वार्क केवल उच्च ऊर्जा टक्करों में उत्पन्न किए जा सकते है। हर क्वार्क फ्लेवर के प्रतिकण होते है जिनके परिमाण तो क्वार्क के बराबर होते है परंतु चिन्ह विपरीत रखते है तथा यह एंटीक्वार्क के रूप में जाने जाते है। क्वार्क मॉडल स्वतंत्र रूप से भौतिकविदों मरे गेल-मन और जॉर्ज वाइग द्वारा 1964 में प्रस्तावित किया गया था। क्वार्क हेड्रॉनों के अंग के रूप में पेश किए गए थे। 1968 में स्टैनफोर्ड रैखिक त्वरक केंद्र पर प्रयोग होने तक उनके भौतिक अस्तित्व के बहुत कम प्रमाण थे। त्वरक प्रयोगों ने सभी छह फ्लेवरों के लिए प्रमाण प्रदान किए। टॉप क्वार्क सबसे अंत में फर्मीलैब पर 1995 में खोजा गया। .

नई!!: प्रोटॉन और क्वार्क · और देखें »

क्वार्क-ग्लूऑन प्लाज्मा

क्वार्क-ग्लूऑन प्लाज्मा (Quark–gluon plasma) जिसे क्वार्क सूप या ग्लाज्मा भी कहते हैं, भौतिकी के मानक प्रारूप के अंतर्गत पदार्थ की पाँचवीं अवस्था है। इस पदार्थ में कण का अवशेष भी नहीं है। यदि प्रोटॉन को अति उच्च तापमान अथवा अति उच्च घनत्व प्रदान किया जाय तो एक ऐसी प्रावस्था की प्राप्ति होती है जिसमें मु्ख्यतः क्वार्क और ग्लूऑन मिलते हैं। माना जा रहा है कि बिग बैंग के तुरंत बाद ही ऐसे पदार्थों का बनना शुरु हो गया। .

नई!!: प्रोटॉन और क्वार्क-ग्लूऑन प्लाज्मा · और देखें »

केन्द्रक (परमाणु)

किसी परमाणु का अतिघनत्व युक्त भारी केन्द्र जहाँ प्रोटान और न्यूट्रॉन स्थित होते हैं। इलेक्ट्रान इसी नाभि के चक्कर काटता है। केन्द्रक.

नई!!: प्रोटॉन और केन्द्रक (परमाणु) · और देखें »

अंतरिक्ष विज्ञान

गैलेक्सी के एक भाग को प्रदर्शित करता हुआ एक तस्वीर अंतरिक्ष विज्ञान एक व्यापक शब्द है जो ब्रह्मांड के अध्ययन से जुड़े विभिन्न विज्ञान क्षेत्रों का वर्णन करता है तथा सामान्य तौर पर इसका अर्थ "पृथ्वी के अतिरिक्त" तथा "पृथ्वी के वातावरण से बाहर" भी है। मूलतः, इन सभी क्षेत्रों को खगोल विज्ञान का हिस्सा माना गया था। हालांकि, हाल के वर्षों में खगोल के कुछ क्षेत्रों, जैसे कि खगोल भौतिकी, का इतना विस्तार हुआ है कि अब इन्हें अपनी तरह का एक अलग क्षेत्र माना जाता है। कुल मिला कर आठ श्रेणियाँ हैं, जिनका वर्णन अलग से किया जा सकता है; खगोल भौतिकी, गैलेक्सी विज्ञान, तारकीय विज्ञान, पृथ्वी से असंबंधित ग्रह विज्ञान, अन्य ग्रहों का जीव विज्ञान, एस्ट्रोनॉटिक्स/ अंतरिक्ष यात्रा, अंतरिक्ष औपनिवेशीकरण और अंतरिक्ष रक्षा.

नई!!: प्रोटॉन और अंतरिक्ष विज्ञान · और देखें »

१ एक संख्या, संख्यांक और ग्लिफ़ है। इसको एक कहते है। अंग्रेज़ी भाषा में इसे वन (One) या 1 लिखते है। वह प्राकृतिक संख्याओं के अनंत अनुक्रम में पहला आता है, और उसके बाद २ आता है। .

नई!!: प्रोटॉन और १ · और देखें »

१० सितंबर

10 सितंबर ग्रेगोरी कैलंडर के अनुसार वर्ष का 253वॉ (लीप वर्ष में 254 वॉ) दिन है। साल में अभी और 112 दिन बाकी है। .

नई!!: प्रोटॉन और १० सितंबर · और देखें »

२०१०

वर्ष २०१० वर्तमान वर्ष है। यह शुक्रवार को प्रारम्भ हुआ है। संयुक्त राष्ट्र ने वर्ष २०१० को अंतराष्ट्रीय जैव विविधता वर्ष के रूप में मनाने का निर्णय लिया है। इन्हें भी देखें 2010 भारत 2010 विज्ञान एवं प्रौद्योगिकी 2010 साहित्य संगीत कला 2010 खेल जगत 2010 .

नई!!: प्रोटॉन और २०१० · और देखें »

B − L

उच्च ऊर्जा भौतिकी में B − L (उच्चारण "बी माइनस एल" या "बी ऋण एल") बेरिऑन संख्या (B) और लेप्टॉन संख्या (L) का अन्तर है। .

नई!!: प्रोटॉन और B − L · और देखें »

यहां पुनर्निर्देश करता है:

प्रोटान, प्रोट्रॉन, प्रोटॉनों, प्रोटोन

निवर्तमानआने वाली
अरे! अब हम फेसबुक पर हैं! »