लोगो
यूनियनपीडिया
संचार
Google Play पर पाएं
नई! अपने एंड्रॉयड डिवाइस पर डाउनलोड यूनियनपीडिया!
इंस्टॉल करें
ब्राउज़र की तुलना में तेजी से पहुँच!
 

उष्मागतिकी

सूची उष्मागतिकी

भौतिकी में उष्मागतिकी (उष्मा+गतिकी .

59 संबंधों: ऊर्जा विज्ञान, ऊष्मा, ऊष्मा का यांत्रिक तुल्यांक, ऊष्मा-अर्थशास्त्र, ऊष्मारसायन, ऊष्माशोषी, ऊष्मागतिक तापक्रम, ऊष्मागतिकी का शून्यवाँ नियम, ऊष्मागतिकी का इतिहास, ऊष्मागतिकी के सिद्धान्त, ऊष्मीय संतुलन, चिरसम्मत भौतिकी, एन्ट्रॉपी, ठोस अवस्था भौतिकी, डेन्यल बर्नूली, तरंग-कण द्वैतता, तापमान, तापमापी, द्विघात इंजन, नैनोप्रौद्योगिकी, परिवहन परिघटना, पश्चिमी संस्कृति, प्रावस्था संक्रमण, फ़्लूएंट, भौतिक रसायन, भौतिक विज्ञानी, भौतिकी की शब्दावली, मैक्स प्लांक, यांत्रिक इंजीनियरी, रासायनिक साम्य, रासायनिक गतिकी, राउल्ट का नियम, रुडॉल्फ क्लासिअस, लजान्द्र रूपान्तर, शैक्षणिक विषयों की सूची, सम्मिश्र विश्लेषण, सादी कार्नो, स्टेफॉन वोल्‍ज़मान नियम, स्थैतिककल्प प्रक्रम, स्व-एकत्रण, हेनरी कैवेंडिश, हेल्महोल्ज़, जूल-टॉमसन प्रभाव, जेम्स प्रेस्कॉट जूल, विद्युत, विशाल अणुकणिका रसायन शास्त्र, व्यावहारिक गणित, गणितीय भौतिकी, गति विज्ञान, गिल्बर्ट न्यूटन ल्यूइस, ..., गैसों का अणुगति सिद्धान्त, आन्तरिक ऊर्जा, इलेक्ट्रॉन वोल्ट, कार्नो प्रमेय, कार्य (ऊष्मागतिकी), क्रांतिक बिन्दु, अनुप्रयुक्त विज्ञान, अभियान्त्रिकी, अंतरिक्ष विज्ञान सूचकांक विस्तार (9 अधिक) »

ऊर्जा विज्ञान

उर्जा के प्रवाह एवं भण्डारण का वैज्ञानिक अध्ययन उर्जा विज्ञान (Energetics) कहलाता है। सर्वसामान्य रूप में उर्जा विज्ञान उन सिद्धान्तों को समझने की कोशिश करता है जो रूपान्तरण के समय उर्जा के उपयोगी एवं अनुपयोगी प्रवाह एवं भण्डारण की ठीक-ठीक व्याख्या करते हैं। चूंकि उर्जा का प्रवाह किसी भी पैमाने पर सम्भव है (क्वान्टम से लेकर जैवमण्डल या ब्रह्माण्ड तक) - उर्जाविज्ञान एक बहुत ही विस्तृत क्षेत्र वाली विधा है। उदाहरण के लिये इसमें उष्मागतिकी, रसायन विज्ञान, जैववैज्ञानिक उर्जा विज्ञान, जैवरसायन आदि समाहित हैं। .

नई!!: उष्मागतिकी और ऊर्जा विज्ञान · और देखें »

ऊष्मा

इस उपशाखा में ऊष्मा ताप और उनके प्रभाव का वर्णन किया जाता है। प्राय: सभी द्रव्यों का आयतन तापवृद्धि से बढ़ जाता है। इसी गुण का उपयोग करते हुए तापमापी बनाए जाते हैं। ऊष्मा या ऊष्मीय ऊर्जा ऊर्जा का एक रूप है जो ताप के कारण होता है। ऊर्जा के अन्य रूपों की तरह ऊष्मा का भी प्रवाह होता है। किसी पदार्थ के गर्म या ठंढे होने के कारण उसमें जो ऊर्जा होती है उसे उसकी ऊष्मीय ऊर्जा कहते हैं। अन्य ऊर्जा की तरह इसका मात्रक भी जूल (Joule) होता है पर इसे कैलोरी (Calorie) में भी व्यक्त करते हैं। .

नई!!: उष्मागतिकी और ऊष्मा · और देखें »

ऊष्मा का यांत्रिक तुल्यांक

ऊष्मा के यांत्रिक तुल्यांक के मापन के लिए जूल द्वारा प्रयुक्त उपकरण ऊष्मा का यांत्रिक तुल्यांक (तुल्यांक .

नई!!: उष्मागतिकी और ऊष्मा का यांत्रिक तुल्यांक · और देखें »

ऊष्मा-अर्थशास्त्र

ऊष्मा-अर्थशास्त्र (Thermoeconomics), अर्थशास्त्र का एक सम्प्रदाय है जो अर्थशास्त्र में भी ऊष्मागतिकी के नियमों के उपयोग का पक्षधर है। 'थर्मो-इकनॉमिक्स' शब्द का सबसे पहले प्रयोग १९६२ में अमेरिकी इंजीनियर माइरन ट्राइबस ने किया था। ऊष्मा-अर्थशास्त्र को उसी प्रकार समझा जा सकता है जैसे सांख्यिकीय भौतिकी (statistical physics) को। श्रेणी:अर्थशास्त्र.

नई!!: उष्मागतिकी और ऊष्मा-अर्थशास्त्र · और देखें »

ऊष्मारसायन

संसार का प्रथम हिम-कैलोरीमीटर (ice-calorimeter) उष्मागतिकी एवं भौतिक रसायन में उष्मारसायन (thermochemistry) वह विद्या है जो किसी रासायनिक अभिक्रिया में उत्पन्न या शोषित की गयी उर्जा का अध्ययन करती है। उष्मारसायन में प्राय: उर्जा के शोषण या उत्सर्जन के परिणामस्वरूप होने वाले भौतिक परिवर्तन (जैसे गलन, क्वथन, फेज परिवर्तन (phase transition) आदि) का भी अध्ययन शामिल है। इसके साथ-साथ उष्मा धारिता, ज्वलन की उष्मा, निर्माण की उष्मा (heat of formation), इन्थाल्पी एवं मुक्त उर्जा (free energy) की गणना भी की जाती है। .

नई!!: उष्मागतिकी और ऊष्मारसायन · और देखें »

ऊष्माशोषी

ऊष्मागतिकी में ऊष्माशोषी (Endothermic) का अर्थ ऐसे प्रक्रम या रासायनिक अभिक्रिया से है जो उष्मीय उर्जा का शोषण करती है। इस प्रक्रिया की बिलोम प्रक्रिया का नाम 'ऊष्माक्षेपी' (exothermic) है। इस शब्द का उपयोग रासायनिक अभिक्रियाओं के सन्दर्भ में बहुत होता है। ऊष्माशोषी रासायनिक क्रियाओं में ऊष्मीय उर्जा, बन्ध उर्जा में परिवर्तित हो जाती है। .

नई!!: उष्मागतिकी और ऊष्माशोषी · और देखें »

ऊष्मागतिक तापक्रम

ऊष्मगतिक तापक्रम (Thermodynamic temperature) या 'परम ताप' (absolute temperature)' तापमान का विशुद्ध माप है। यह ऊष्मगतिकी के मुख्य प्राचलों (पैरामीटर) में से एक है। ऊष्मागतिक तापक्रम ऊष्मागतिकी के द्वितीय नियम द्वारा परिभाषित है जिसमें सिद्धान्त रूप में न्यूनतम सम्भव ताप को 'शून्य बिन्दु' माना जाता है। इस ताप को 'परम शून्य' (absolute zero) भी कहते हैं। इस ताप पर पदार्थ के कण न्यूनतम गति की स्थिति में होते हैं तथा इससे कम ठण्डे नहीं हो सकते। क्वाण्टम यांत्रिकी की भाषा में, परम ताप पर पदार्थ अपनी निम्नतम अवस्था (ground state) में होता है जो इसकी न्यूनतम ऊर्जा की अवस्था है। इस कारण ही ऊष्मागतिक तापक्रम को 'परम ताप' भी कहा जाता है। एट्मॉस्फेयर दबाव में दर्शित है। इन सामान्य तापमान पर स्थित परमणुओं की एक औसत गति निश्चित होती है (यहां दो ट्रिलियन गुणा कम करी गयी है)। किसी दिये गये समय पर हीलियम परमाणु औसत से कहीं अधिक तेज गति पर हो सकता है, वहीं कोई दूसरा एकदम निष्क्रीय भी हो सकता है। गति दिखाने हेतु पाँच परमाणु लाल दर्शित हैं। .

नई!!: उष्मागतिकी और ऊष्मागतिक तापक्रम · और देखें »

ऊष्मागतिकी का शून्यवाँ नियम

ऊष्मागतिकी के अध्ययन में एक नई भावना का समावेश होता है, वह ताप की भावना है। यदि किसी पिंड (बॉडी) के गुणधर्म इस बात पर निर्भर न रहें कि वह कितना गरम अथवा ठंडा है तो उसका पूरा परिचय पाने के लिए उसके आयतन अथवा उसके घनत्व के ज्ञान की ही आवश्यकता होती है। जैसे यदि हम कोई द्रव लें तो यांत्रिकी में यह माना जाता है कि उसके ऊपर दाब बढ़ाने पर उसका आयतन कम होगा। दाब का मान निश्चित करते ही आयतन का मान भी निश्चित हो जाता है। इस तरह इन दो चर राशियों में से एक स्वतंत्र होती है और दूसरी आश्रित अथवा परंतत्र। परंतु प्रत्यक्ष अनुभव से हम जानते हैं कि आयतन यदि स्थिर हो तो भी गरम या ठंडा करके दाब को बदला जा सकता है। इस प्रकार दाब तथा आयतन दोनों ही स्वतंत्र चर राशियाँ हैं। आगे चलकर आवश्यकतानुसार हम अन्य चर राशियों का भी समावेश करेंगे। और आगे बढ़ने के पहले हम ऐसी दीवारों की कल्पना करेंगे जो विभिन्न द्रवों को एक दूसरे से अलग करती हैं। ये दीवारें इतनी सूक्ष्म होंगी कि इन द्रवों की पारस्परिक अंतरक्रिया को निश्चित करने के अतिरिक्त उन द्रवों के गुणधर्म के ऊपर उनका अन्य कोई प्रभाव नहीं होगा। द्रव इन दीवारों के एक ओर से दूसरी ओर न जा सकेगा। हम यह भी कल्पना करेंगे कि ये दीवारें दो तरह की हैं। एक ऐसी दीवारें जिनसे आवृत द्रव में बिना उन दीवारों अथवा उनके किसी भाग को हटाए हम कोई परिवर्तन नहीं कर सकते और उन द्रवों में हम विद्युतीय या चुंबकीय बलों द्वारा परिवर्तन कर सकते हैं क्योंकि ये बल दूर से भी अपना प्रभाव डाल सकते हैं। ऐसी दीवारों को हम "स्थिरोष्म" दीवारें कहेंगे। दूसरे प्रकार की दीवारों को हम "उष्मागम्य" (डायाथर्मानस) दीवारें कहेंगे। ये दीवारें ऐसी होंगी कि साम्यावस्था में इनके द्वारा अलग किए गए द्रवों की दाब तथा आयतन के मान स्वेच्छ नहीं होंगे, अर्थात् यदि एक द्रव की दाब एवं आयतन और दूसरे द्रव की दाब निश्चित कर दी जाए तो दूसरे द्रव का आयतन भी निश्चित हो जाएगा। ऐसी अवस्था में पहले द्रव की दाब एवं आयतन P1 और V1 तथा दूसरे द्रव की दाब एवं आयतन P2 और V2 में एक संबंध होगा जिसे हम निम्नांकित समीकरण द्वारा प्रकट कर सकते हैं:; F (P1, V1, P2, V2) .

नई!!: उष्मागतिकी और ऊष्मागतिकी का शून्यवाँ नियम · और देखें »

ऊष्मागतिकी का इतिहास

सावरी का इंजन - सन १६९८ में थॉमस सावरी द्वारा निर्मित वाणिज्यिक रूप से उपयोगी विश्व का प्रथम वाष्प इंजन ऊष्मागतिकी, भौतिक विज्ञान, रसायन विज्ञान और व्यापक रूप में विज्ञान का ही महत्वपूर्ण और मूलभूत विषय रहा है। ऊष्मागतिकी विज्ञान की वह शाखा है जिसमें यान्त्रिक कार्य तथा ऊष्मा में परस्पर सम्बन्ध का वर्णन किया जाता है, यह प्रमुख रूप से यान्त्रिक कार्य तथा ऊष्मा के परस्पर रुपान्तरण से सम्बन्धित है। ऊष्मागतिकी के मुख्यतः दो नियम है-.

नई!!: उष्मागतिकी और ऊष्मागतिकी का इतिहास · और देखें »

ऊष्मागतिकी के सिद्धान्त

19वीं शताब्दी के मध्य में ऊष्मागतिकी के दो सिद्धांतों का प्रतिपादन किया गया था, जिन्हें उष्मागतिकी के प्रथम एवं द्वितीय सिद्धांत कहते हैं। 20वीं शताब्दी के प्रारंभ में दो अन्य सिद्धांतों का प्रतिपादन किया गया है जिन्हें उष्मागतिकी का शून्यवाँ तथा तृतीय सिद्धांत कहते हैं।.

नई!!: उष्मागतिकी और ऊष्मागतिकी के सिद्धान्त · और देखें »

ऊष्मीय संतुलन

दो भौतिक तंत्र ऊष्मीय संतुलन (thermal equilibrium) में कहें जाते हैं जब उन दोनो के बीच ऊष्मा के लिए पारगम्य मार्ग हो (यानि जिसके द्वारा ऊष्मीय ऊर्जा सहजता से आ-जा सके) लेकिन इसके बावजूद उनके बीच ऊष्मीय ऊर्जा का कोई औसत प्रवाह न हो। कोई भौतिक तंत्र स्वयं अपने भीतर ऊष्मीय संतुलन में तब कहा जाता है जब उसके सभी भागों में तापमान समान हो और समय के साथ परिवर्तित न हो रहा हो। .

नई!!: उष्मागतिकी और ऊष्मीय संतुलन · और देखें »

चिरसम्मत भौतिकी

आधुनिक भौतिकी के चार प्रमुख क्षेत्र चिरसम्मत भौतिकी (क्लासिकल फिजिक्स) भौतिक विज्ञान की वह शाखा है जिसमें द्रव्य और ऊर्जा दो अलग अवधारणाएं हैं। प्रारम्भिक रूप से यह न्यूटन के गति के नियम व मैक्सवेल के विद्युतचुम्बकीय विकिरण सिद्धान्त पर आधारित है। चिरसम्मत भौतिकी को सामान्यतः विभिन्न क्षेत्रों में विभाजित किया जाता है। इनमें यांत्रिकी (इसमें पदार्थ की गति तथा उस पर आरोपित बलों का अध्ययन किया जाता है।), गतिकी, स्थैतिकी, प्रकाशिकी, उष्मागतिकी (ऊर्जा और उष्मा का अध्ययन) और ध्वनिकी शामिल हैं तथा इसी प्रकार विद्युत व चुम्बकत्व के परिसर में दृष्टिगोचर अध्ययन। द्रव्यमान संरक्षण का नियम, ऊर्जा संरक्षण का नियम और संवेग संरक्षण का नियम भी चिरसम्मत भौतिकी में महत्वपूर्ण हैं। इसके अनुसार द्रव्यमान और ऊर्जा को ना ही तो बनाया जा सकता है और ना ही नष्ट किया जा सकता और केवल बाह्य असन्तुलित बल आरोपित करके ही संवेग को परिवर्तित किया जा सकता है। .

नई!!: उष्मागतिकी और चिरसम्मत भौतिकी · और देखें »

एन्ट्रॉपी

एन्ट्रॉपी। ऊष्मागतिकी में, एन्ट्रॉपी एक भौतिक राशि है जो सीधे मापी नहीं जाती बल्कि गणना (कैल्कुलेशन) द्वारा इसका मान निकाला जाता है। इसका प्रतीक S है। किसी निकाय की कुल ऊर्जा का वह भाग जिसे उपयोग में नहीं लाया जा सकता (दूसरे शब्दों में, कार्य में नहीं बदला जा सकता), उस निकाय की एन्ट्रॉपी कहलाती है। एण्ट्रॉपी की गणितीय परिभाषा नीचे दी गयी है। जर्मनी के गणितज्ञ एवं भौतिकशास्त्री रुडॉल्फ क्लासिअस ने १८५० के दशक में एन्ट्रॉपी की संकल्पना दी और उसका यह नाम दिया। १८७७ में लुडविग बोल्ट्जमान ने एन्ट्रॉपी की प्रायिकता पर आधारित परिभाषा दी। .

नई!!: उष्मागतिकी और एन्ट्रॉपी · और देखें »

ठोस अवस्था भौतिकी

हीरा की संरचना का चलित दृष्य ठोस अवस्था की भौतिकी (Solid-state physics) को ठोस अवस्था का सिद्धांत (Solid-state theory) के नाम से भी जाना जाता है। यह भौतिकी की वह शाखा है जिसमें ठोस की संरचना और उसके भौतिक गुणों का अध्ययन किया जाता है। यह संघनित प्रावस्था भौतिकी की सबसे बड़ी शाखा है। ठोस अवस्था भौतिकी में इस बात पर विचार किया जाता है कि ठोसों के वाह्य गुण उनके परमाणु-स्तरीय गुणों से किस प्रकार सम्बन्धित हैं। इस प्रकार ठोस अवस्था भौतिकी, पदार्थ विज्ञान का सैद्धान्तिक आधार बनाती है। इसके अलावा ट्रांजिस्टरों की प्रौद्योगिकी एवं अर्धचालकों की तकनीकी आदि में इसका सीधा उपयोग भी होता है। .

नई!!: उष्मागतिकी और ठोस अवस्था भौतिकी · और देखें »

डेन्यल बर्नूली

डैनियल बर्नूली अथवा डैनियल बर्नौली (8 फ़रवरी 1700 – 17 मार्च 1782) स्विस गणितज्ञ और भौतिक विज्ञानी थे। वो बर्नूली परिवार के विभिन्न प्रसिद्ध गणितज्ञों में से एक थे। वो यांत्रिकी की गणित, विशेषतः तरल यांत्रिकी और प्रायिकता एवं सांख्यिकी में अग्रणी कार्य के लिए जाने जाते हैं। उनका नाम बर्नूली प्रमेय में स्मरित किया जाता है जो ऊर्जा संरक्षण का नियम का एक उदाहरण है और २०वीं सदी की दो महत्त्वपूर्ण तकनीकी उपलब्धियों कार्ब्युरेटर तथा वायुयान के पंख में प्रयुक्त गणित को वर्णित करती है। .

नई!!: उष्मागतिकी और डेन्यल बर्नूली · और देखें »

तरंग-कण द्वैतता

तरंग-कण द्वैतता अथवा तरंग-कण द्विरूप सिद्धान्त के अनुसार सभी पदार्थों में कण और तरंग (लहर) दोनों के ही लक्षण होते हैं। आधुनिक भौतिकी के क्वाण्टम यान्त्रिकी क्षेत्र का यह एक आधारभूत सिद्धान्त है। जिस स्तर पर मनुष्यों की इन्द्रियाँ दुनिया को भाँपती हैं, उस स्तर पर कोई भी वस्तु या तो कण होती है या तरंग होती है, लेकिन एक साथ दोनों नहीं होते। परमाणुओं के बहुत ही सूक्ष्म स्तर पर ऐसा नहीं होता और यहाँ भौतिकी समझने के लिए पाया गया कि वस्तुएँ और प्रकाश कभी तो कण की प्रकृति दिखाती हैं और कभी तरंग की। इस समय स्थिति बड़ी विलक्षण है। कुछ घटनाओं से तो प्रकाश तरंगमय प्रतीत होता है और कुछ से कणिकामय। संभवत: सत्य द्वैतमय है। रूपए के दोनों पृष्ठों की तरह, प्रकाश के भी दो विभिन्न रूप हैं। किंतु हैं दोनों ही सत्य। ऐसा ही द्वैत द्रव्य के संबंध में भी पाया गया है। वह भी कभी तरंगमय दिखाई देता है और कभी कणिकामय। न तो प्रकाश के ओर न द्रव्य के दोनों रूप एक ही समय में एक ही साथ दिखाई दे सकते हैं। वे परस्पर विरोधी, किंतु पूरक रूप हैं। .

नई!!: उष्मागतिकी और तरंग-कण द्वैतता · और देखें »

तापमान

आदर्श गैस के तापमान का सैद्धान्तिक आधार अणुगति सिद्धान्त से मिलता है। तापमान किसी वस्तु की उष्णता की माप है। अर्थात्, तापमान से यह पता चलता है कि कोई वस्तु ठंढी है या गर्म। उदाहरणार्थ, यदि किसी एक वस्तु का तापमान 20 डिग्री है और एक दूसरी वस्तु का 40 डिग्री, तो यह कहा जा सकता है कि दूसरी वस्तु प्रथम वस्तु की अपेक्षा गर्म है। एक अन्य उदाहरण - यदि बंगलौर में, 4 अगस्त 2006 का औसत तापमान 29 डिग्री था और 5 अगस्त का तापमान 32 डिग्री; तो बंगलौर, 5 अगस्त 2006 को, 4 अगस्त 2006 की अपेक्षा अधिक गर्म था। गैसों के अणुगति सिद्धान्त के विकास के आधार पर यह माना जाता है कि किसी वस्तु का ताप उसके सूक्ष्म कणों (इलेक्ट्रॉन, परमाणु तथा अणु) के यादृच्छ गति (रैण्डम मोशन) में निहित औसत गतिज ऊर्जा के समानुपाती होता है। तापमान अत्यन्त महत्वपूर्ण भौतिक राशि है। प्राकृतिक विज्ञान के सभी महत्वपूर्ण क्षेत्रों (भौतिकी, रसायन, चिकित्सा, जीवविज्ञान, भूविज्ञान आदि) में इसका महत्व दृष्टिगोचर होता है। इसके अलावा दैनिक जीवन के सभी पहलुओं पर तापमान का महत्व है। .

नई!!: उष्मागतिकी और तापमान · और देखें »

तापमापी

|एक चिकित्सकीय तापमापी '''तापमापी''' तापमापी या थर्मामीटर वह युक्ति है जो ताप या 'ताप की प्रवणता' को मापने के काम आती है। 'तापमिति' (Thermometry) भौतिकी की उस शाखा का नाम है, जिसमें तापमापन की विधियों पर विचार किया जाता है। तापमापी अनेक सिद्धान्तों के आधार पर निर्मित किये जा सकते हैं। द्रवों का आयतन ताप ग्रहण कर बढ़ जाता है तथा आयतन में होने वाली यह वृद्धि तापक्रम के समानुपाती होता है। साधारण थर्मामीटर इसी सिद्धान्त पर काम करते हैं। .

नई!!: उष्मागतिकी और तापमापी · और देखें »

द्विघात इंजन

द्विघात इंजन का चलित (एनिमेटेड) स्वरूप द्विघात इंजन (two-stroke engine) एक प्रकार का अन्तर्दहन इंजन है जो क्रैंकशाफ्ट के एक ही चक्कर (अर्थात, पिस्टन के दो चक्कर) में ही उर्जा-परिवर्तन का पूरा चक्र (thermodynamic cycle) पूरा कर लेता है। अर्थात दो-घाती इंजन अपने ऊष्मागतिकी चक्र को पिस्टन के दो चक्रों में पूरा करता है। चतुर्घात इंजन में उर्जा-परिवर्तन का चक्र पिस्टन के चार चक्करों में पूरा होता है। .

नई!!: उष्मागतिकी और द्विघात इंजन · और देखें »

नैनोप्रौद्योगिकी

नैनोतकनीक या नैनोप्रौद्योगिकी, व्यावहारिक विज्ञान के क्षेत्र में, १ से १०० नैनो (अर्थात 10−9 m) स्केल में प्रयुक्त और अध्ययन की जाने वाली सभी तकनीकों और सम्बन्धित विज्ञान का समूह है। नैनोतकनीक में इस सीमा के अन्दर जालसाजी के लिये विस्तृत रूप में अंतर-अनुशासनात्मक क्षेत्रों, जैसे व्यावहारिक भौतिकी, पदार्थ विज्ञान, अर्धचालक भौतिकी, विशाल अणुकणिका रसायन शास्त्र (जो रासायन शास्त्र के क्षेत्र में अणुओं के गैर कोवलेन्त प्रभाव पर केन्द्रित है), स्वयमानुलिपिक मशीनएं और रोबोटिक्स, रसायनिक अभियांत्रिकी, याँत्रिक अभियाँत्रिकी और वैद्युत अभियाँत्रिकी.

नई!!: उष्मागतिकी और नैनोप्रौद्योगिकी · और देखें »

परिवहन परिघटना

अभियान्त्रिकी, भौतिकी और रसायनिकी में परिवहन परिघटना (transport phenomena) किन्ही दो या दो से अधिक भौतिक तंत्रों के बीच में द्रव्यमान, ऊर्जा, आवेश, संवेग या कोणीय संवेग के आदान-प्रदान को कहते हैं। द्रव्यमान, ताप, ऊर्जा और संवेग के गणितीय विश्लेषण में बहुत-सी समानताएँ होती हैं जिनका परिवहन परिघटनाओं के अध्ययन में व्यवस्थित रूप से लाभ उठाया जाता है। .

नई!!: उष्मागतिकी और परिवहन परिघटना · और देखें »

पश्चिमी संस्कृति

पश्चिमी संस्कृति (जिसे कभी-कभी पश्चिमी सभ्यता या यूरोपीय सभ्यता के समान माना जाता है), यूरोपीय मूल की संस्कृतियों को सन्दर्भित करती है। यूनानियों के साथ शुरू होने वाली पश्चिमी संस्कृति का विस्तार और सुदृढ़ीकरण रोमनों द्वारा हुआ, पंद्रहवी सदी के पुनर्जागरण एवं सुधार के माध्यम से इसका सुधार और इसका आधुनिकीकरण हुआ और सोलहवीं सदी से लेकर बीसवीं सदी तक जीवन और शिक्षा के यूरोपीय तरीकों का प्रसार करने वाले उत्तरोत्तर यूरोपीय साम्राज्यों द्वारा इसका वैश्वीकरण हुआ। दर्शन, मध्ययुगीन मतवाद एवं रहस्यवाद, ईसाई एवं धर्मनिरपेक्ष मानवतावाद की एक जटिल श्रृंखला के साथ यूरोपीय संस्कृति का विकास हुआ। ज्ञानोदय, प्रकृतिवाद, स्वच्छंदतावाद (रोमेन्टिसिज्म), विज्ञान, लोकतंत्र और समाजवाद के प्रयोगों के साथ परिवर्तन एवं निर्माण के एक लंबे युग के माध्यम से तर्कसंगत विचारधारा विकसित हुई.

नई!!: उष्मागतिकी और पश्चिमी संस्कृति · और देखें »

प्रावस्था संक्रमण

भिन्न प्रकार के फेज़ परिवर्तन प्रावस्था संक्रमण या फेज़ ट्रांजिसन (phase transition) किसी उष्मागतिकी मंडल में उस प्रक्रिया को कहते हैं जिसमें कोई पदार्थ अपनी प्रकृति बदल लेता है। उदाहरण के लिए बर्फ़ एक ठोस चीज़ होती है लेकिन गरम करने पर अवस्था परिवर्तन करके पानी नामक द्रव बन जाती है। अगर और गरम किया जाए तो यह फिर से परिवर्तित होकर भाप नामक गैस बन जाती है। कई गैसों को और भी उत्तेजित करने से वह प्लाज़्मा का रूप धारण कर लेती हैं।, Michael Plischke, Birger Bergersen, World Scientific, 2006, ISBN 978-981-256-048-3, Pierre Papon, Jacques Leblond, Paul Herman Ernst Meijer, Springer, 2006, ISBN 978-3-540-33389-0 .

नई!!: उष्मागतिकी और प्रावस्था संक्रमण · और देखें »

फ़्लूएंट

प़्लूएंट (अंग्रेजी:FLUENT) एक सांख्यिक विश्लेषण सॉफ्टवेयर है जो तरल यांत्रिकी के प्रश्नों के हल हेतु प्रयुक्त होता है। यह सॉफ्टवेयर गणकीय तरल यांत्रिकी तकनिक का उपयोग कर जटिल तरल यांत्रिकी, उष्मागतिकी, रसायनिक प्रजातीयों के स्थानांतरण (species transfer) आदी भौतिक प्रभावो का विषलेश्ण करने मे सक्ष्म है। यह एंसिस इंक का एक प्रभाग है जो यांत्रिक गणितीय हल प्रदान करने वाली एक महत्वपूर्ण संस्था है। श्रेणी:सांख्यिक विश्लेषण.

नई!!: उष्मागतिकी और फ़्लूएंट · और देखें »

भौतिक रसायन

भौतिक रसायन भौतिक रसायान (Physical chemistry या physicochemistry) रसायन विज्ञान की वह शाखा है जो भौतिक अवधारणाओं के आधार पर रासायनिक प्रणालियों में घटित होने वाली परिघटनाओं (phenomenon) की व्याख्या करती है। द्रव्य की अविनाशिता के नियम के साथ ही साथ भौतिक रसायन की नींव पड़ी, यद्यपि १९वीं शती के अंत तक भौतिक रसायन को रसायन का पृथक्‌ अंग नहीं माना गया। वांट हॉफ, विल्हेल्म ऑस्टवाल्ड और आरिनियस के कार्यें ने भौतिक रसायन की रूपरेखा निर्धारित की। स्थिर अनुपात और गुणित अनुपात एवं परस्पर अनुपात के नियमों ने और बाद को आवोगाड्रो नियम, गेलुसैक नियम आदि ने परमाणु और अणु की कल्पना को प्रश्रय दिया। परमाणुभार और अणुभार निकालने की विविध पद्धतियों का विकास किया गया। गैस संबंधी बॉयल और चार्ल्स के नियमों ने और ग्राहम के विसरण नियमों ने इसमें सहायता दी। विलयनों की प्रकृति समझने में परासरण दाब संबंधी विचारों ने एक नवीन युग को जन्म दिया। पानी में घुलकर शक्कर के अणु उसी प्रकार अलग अलग हो जाते हैं जैसे शून्य स्थान में गैस के अणु। राउल्ट (Raoult) का वाष्पदाब संबंधी समीकरण विलयनों के संबंध में बड़े काम का सिद्ध हुआ। .

नई!!: उष्मागतिकी और भौतिक रसायन · और देखें »

भौतिक विज्ञानी

अल्बर्ट आइंस्टीन, जिन्होने सामान्य आपेक्षिकता का सिद्धान्त दिया भौतिक विज्ञानी अथवा भौतिक शास्त्री अथवा भौतिकीविद् वो वैज्ञानिक कहलाते हैं जो अपना शोध कार्य भौतिक विज्ञान के क्षेत्र में करते हैं। उप-परवमाणविक कणों (कण भौतिकी) से लेकर सम्पूर्ण ब्रह्माण्ड तक सभी परिघटनाओं का अध्ययन करने वाले लोग इस श्रेणी में माने जाते हैं। .

नई!!: उष्मागतिकी और भौतिक विज्ञानी · और देखें »

भौतिकी की शब्दावली

* ढाँचा (Framework).

नई!!: उष्मागतिकी और भौतिकी की शब्दावली · और देखें »

मैक्स प्लांक

युवा मैक्स प्लांक (१८७८) जर्मन वैज्ञानिक मैक्स प्लांक (Max Planck) का जन्म 23 अप्रैल 1858 को हुआ था। ग्रेजुएशन के बाद जब उसने भौतिकी का क्षेत्र चुना तो एक अध्यापक ने राय दी कि इस क्षेत्र में लगभग सभी कुछ खोजा जा चुका है अतः इसमें कार्य करना निरर्थक है। प्लांक ने जवाब दिया कि मैं पुरानी चीज़ें ही सीखना चाहता हूँ.

नई!!: उष्मागतिकी और मैक्स प्लांक · और देखें »

यांत्रिक इंजीनियरी

सिलाई मशीन (सन् 1900 के आसपास); मशीन के कार्य आज भी लगभग वही है जो पहले था। एक आधुनिक मशीन: फिलिंग और डोसिंग मशीन यांत्रिक इंजीनियर इंजन, शक्ति-संयंत्र आदि की डिजाइन करते हैं। Two involute gears, the left driving the right: Blue arrows show the contact forces between them. The force line (or Line of Action) runs along a tangent common to both base circles. यान्त्रिक अभियांत्रिकी (Mechanical engineering) तरह-तरह की मशीनों की बनावट, निर्माण, चालन आदि का सैद्धान्तिक और व्यावहारिक ज्ञान है। यान्त्रिक अभियांत्रिकी, अभियांत्रिकी की सबसे पुरानी और विस्तृत शाखाओं में से एक है। यान्त्रिक अभियांत्रिकी १८वीं शताब्दी में यूरोप में औद्योगिक क्रांति के दौरान एक क्षेत्र के रूप में उभरी है, लेकिन, इसका विकास दुनिया भर में कई हजार साल में हुआ है। १९वीं सदी में भौतिकी के क्षेत्र में विकास के एक परिणाम के रूप में यांत्रिक अभियांत्रिकी विज्ञान सामने आया। इसके आधआरभूत विषय हैं.

नई!!: उष्मागतिकी और यांत्रिक इंजीनियरी · और देखें »

रासायनिक साम्य

जब अग्रक्रिया और पश्चक्रिया की गति समान हो जाती है तो साम्य की स्थिति होती है।'''नीला''': अग्रक्रिया '''लाल''': पश्चक्रियाक्षैतिज अक्ष पर समय तथा उर्ध्व अक्ष पर अभिक्रिया का वेग है। किसी रासायनिक अभिक्रिया के सन्दर्भ में रासायनिक साम्य (chemical equilibrium) उस अवस्था को कहते हैं जिसमें समय के साथ अभिकारकों एवं उत्पादों के सांद्रण में कोई परिवर्तन नहीं होता। प्रायः यह अवस्था तब आती है जब अग्र क्रिया (forward reaction) की गति पश्चक्रिया (reverse reaction) की गति के समान हो जाती है। ध्यान देने योग्य बात यह है कि अग्रक्रिया एवं पश्च क्रिया के वेग इस अवस्था में शून्य नहीं होते बल्कि समान होते हैं। यदि उच्च ताप (५०० डिग्री सेल्सियस) पर किसी बंद प्रक्रिया पात्र में हाइड्रोजेन तथा आयोडीन को आण्विक अनुपात में साथ साथ रखा जाए, तो निम्नांकित क्रिया प्रारंभ होती है: इस क्रिया में हाइड्रोजन तथा आयोडीन के संयोग से हाइड्रोजेन आयोडाइड बनता है तथा समय के साथ हाइड्रोजेन आयोडाइड की मात्रा में वृद्धि होती है। इस क्रिया के विपरीत, यदि शुद्ध हाइड्रोजेन आयोडाइड गैस को ५०० डिग्री सेल्सियस तक क्रियापात्र में गरम किया जाए, तो इस यौगिक का विपरीत क्रिया के द्वारा विघटन होता है, जिससे हाइड्रोजन आयोडाइड का हाइड्रोजन तथा आयोडीन में विघटन हो जाता है तथा इन उत्पादों के अनुपात में समय के साथ साथ वृद्धि होती है। यह क्रिया निम्नांकित रूप में होती हैं: उपर्युक्त दोनों ही क्रियाओं में क्रिया की गति क्रमश: मंद होती जाती है और अंत में पूर्णत: स्थिर हो जाती है। रासायनिक क्रिया की इस स्थिति को रासायनिक साम्यावस्था कहते हैं। क्रिया के साम्यावस्था मिश्रण में उपर्युक्त पदार्थों की आपेक्षिक मात्रा एक ही रहती है, चाहे यह क्रिया हाइड्रोजेन और आयोडीन के संयोग से हाइड्रोजेन आयोडाइड बनाने की हो, अथवा हाइड्रोजेन आयोडाइड के विघटन से हाइड्रोजन तथा आयोडीन में पृथक्करण हो, अथवा तीनों संघटकों के साम्यावस्था संतुलन मिश्रण की प्रक्रिया हो, जिसमें हाइड्रोजेन तथा आयेडीन परमाणुओं की समान संख्या उपस्थित रहती है। इसके अतिरिक्त प्रयोगशाला के परिणामों में यह पाया जाता है कि चाहे हाइड्रोजेन तथा आयोडीन के परमाणुओं की समस्त संख्या समान हो अथवा नहीं, दोनों ही दशाओं में समान ताप पर तैयार किए हुए साम्यावस्था मिश्रणों की सामयावस्था सांद्रता, अथवा साम्यावस्था दबाव के निम्नांकित अनुपातों का मान, स्थिर रहता है.

नई!!: उष्मागतिकी और रासायनिक साम्य · और देखें »

रासायनिक गतिकी

अभिक्रिया की गति सांद्रण बढ़ने पबढ़ती है - इस परिघटना को संघ्ट्ट के सिद्धान्त (कोलिजन थिअरी) के द्वारा समझा जा सकता है। आधुनिक रासायनिक एवं औद्योगिक ज्ञान के विकास के साथ ही साथ रासायनिक गतिकी (केमिकल काइनेटिक्स) या 'अभिक्रिया गतिविज्ञान' (Reaction, Kinetics) का शीघ्रता से विकास हुआ है। इसके फलस्वरूप रासायनिक प्रतिक्रिया गतिविज्ञान केवल प्रयोगशालाओं में सीमित न रहकर अब औद्योगिक संयंत्र का एक अंग बन गया है। अनेक रासायनिक क्रियाओं के द्वारा ओद्यौगिक उत्पादन किया जाता है। अत: रासायनिक उद्योग में इन क्रियाओं का अत्यंत महत्व होता है। आधुनिक युग में रासायनिक क्रियाओं के केवल प्रारंभिक ज्ञान से रासायनिक उद्योगों की स्थापना एवं विकास संभव नहीं है, विशेषत: जब कम लागत के उत्पादन पर अत्याधिक बल दिया जाता है। अत: आधुनिक काल में प्रतिक्रिया गतिविज्ञान का गहन अध्ययन केवल प्रयोगशाला का विषय न होकर औद्योगिक क्षेत्र का प्रमुख विषय बन गया है। प्रतिक्रिया गतिविज्ञान के विषयक्षेत्र में वृद्धि एवं विकास का प्रमुख कारण ऊष्मा-गति-विज्ञान का विकास है। .

नई!!: उष्मागतिकी और रासायनिक गतिकी · और देखें »

राउल्ट का नियम

राउल्ट के नियम का पालन करने वाले द्विक विलयन (बाइनरी सलुशन) का वाष्प दाब; काली रेखा, विलयन का कुल वाष्प दाब है (अवयव B के अणु-अंश के फलन के रूप में); दो हरी रेखायें दो अवयवों के आंशिक दाब हैं। राउल्ट का नियम (Raoult's law) फ्रांसीसी रसायनशास्त्री राउल्ट द्वारा १८८२ में प्रस्तुत एक ऊष्मागतिक नियम है। इस नियम के अनुसार, द्रवों के किसी मिश्रण के किसी अवयव का आंशिक वाष्प दाब उस अववय के शुद्ध वाष्प दाब और मिश्रण में उस अवयव की अणु-अंश (me fraction) के गुणनफल के बराबर होता है। दूसरे शब्दों में, जहाँ p^o_i T ताप पर शुद्ध अवयव का वाष्प दाब है। जब किसी विलयन के घटक साम्यावस्था में पहुँच जाते हैं उस स्थिति में इस विलयन का कुल वाष्प दाब राउल्ट के नियम एवं डाल्टन का आंशिक दाब का नियम को मिलाकर निर्मित निम्नलिखित सूत्र से निकाला जा सकता है- ध्यान दें कि यदि अवाष्पशील विलेय (वाष्प दाब.

नई!!: उष्मागतिकी और राउल्ट का नियम · और देखें »

रुडॉल्फ क्लासिअस

300px रुडॉल्फ क्लासिअस (Rudolf Julius Emanuel Clausius; 2 जनवरी 1822 – 24 अगस्त 1888) जर्मन भौतिकशास्त्री और गणितज्ञ था। वह ऊष्मागतिकी के संस्थापकों में से एक है। १८६५ ई में उसने एन्ट्रॉपी की संकल्पना को जन्म दिया। श्रेणी:जर्मन भौतिकशास्त्री श्रेणी:जर्मन गणितज्ञ.

नई!!: उष्मागतिकी और रुडॉल्फ क्लासिअस · और देखें »

लजान्द्र रूपान्तर

लजान्द्र रूपान्तर की ज्यामितीय व्याख्या गणित में किसी वास्तविक मान वाले, तथा सभी बिन्दुओं पर अवकलनीय फलन f तथा g में निम्नलिखित सम्बन्ध हो तो g को f का लजान्द्र रूपान्तर (LegendreTransform) कहा जाता है। इस रूपान्तर का नाम फ्रांसीसी गणितज्ञ आद्रियें मारि लजान्द्र (Adrien-Marie Legendre) के नाम पर पड़ा है। जहाँ D, अवकलज (डिफरेंशियल) का प्रतीक है तथा दाहिनी ओर आने वाला -1, प्रतिलोम फलन को सूचित कर रहा है। यह आसानी से दिखाया जा सकता है कि g, f का लजान्द्र रूपान्तर हो तो f, g का लजान्द्र रूपान्तर होगा उदाहरण के लिये, फलन f(x).

नई!!: उष्मागतिकी और लजान्द्र रूपान्तर · और देखें »

शैक्षणिक विषयों की सूची

यहाँ शैक्षणिक विषय (academic discipline) से मतलब ज्ञान की किसी शाखा से है जिसका अध्ययन महाविद्यालय स्तर या विश्वविद्यालय स्तर पर किया जाता है या जिन पर शोध कार्य किया जाता है। .

नई!!: उष्मागतिकी और शैक्षणिक विषयों की सूची · और देखें »

सम्मिश्र विश्लेषण

सम्मिश्र विश्‍लेषण (Complex analysis) जिसे सामान्यतः सम्मिश्र चरों के फलनों का सिद्धान्त भी कहा जाता है गणितीय विश्लेषण की एक शाखा है जिसमें सम्मिश्र संख्याओं के फलनों का अध्ययन किया जाता है। यह बीजीय ज्यामिति, संख्या सिद्धान्त, व्यावहारिक गणित सहित गणित की विभिन्न शाखाओं में उपयोगी है तथा इसी प्रकार तरल गतिकी, उष्मागतिकी, यांत्रिक अभियान्त्रिकी और विद्युत अभियान्त्रिकी सहित भौतिक विज्ञान में भी उपयोगी है। .

नई!!: उष्मागतिकी और सम्मिश्र विश्लेषण · और देखें »

सादी कार्नो

सादी कार्नो निकोलस लिओनार्द सादी कारनो (१७९६ - १८३२) फ्रांसीसी भौतिकीविद् एवं सैन्य इंजीनियर थे। इन्होने १८२४ में लिखित अपनी पुस्तक 'आग की गतिकारी शक्ति एवं उसका उपयोग करने वाले इंजनों पर चिन्तन' (Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance) में सबसे पहले एक सफल ऊष्मा इंजन का सिद्धान्त दिया। अब इस इंजन को 'कार्नो चक्र' (Carnot cycle) के नाम से जाना जाता है। इस पुस्तक में उन्होने ऊष्मागतिकी के द्वितीय नियम की भी आधारशिला रख दी थी। इन्ही कारणों से उन्हें 'ऊष्मागतिकी का जनक' कहा जाता है। 'कार्नो दक्षता', कार्नो प्रमेय, कार्नो ऊष्मा इंजन आदि उनकी ही देन हैं। .

नई!!: उष्मागतिकी और सादी कार्नो · और देखें »

स्टेफॉन वोल्‍ज़मान नियम

स्टेफॉन वोल्‍ज़मान नियम जिसे स्टेफॉन का नियम के नाम से भी जाना जाता है एक सम्बंध है जो कृष्णिका द्वारा विकरित शक्‍ति को ताप के शब्दों में वर्णित करता है। विशेष रूप से स्टेफॉन वोल्‍ज़मान नियमानुसार इकाई समय में सभी तरंगदैर्घ्य परास में कृष्णिका द्वारा प्रति इकाई पृष्ठिय क्षेत्रफल द्वारा विकरित कुल ऊर्जा j^ कृष्णिका के ऊष्मगतिकीय ताप T के चतुर्थ घात के अनुक्रमानुपाती होता है: अनुक्रमानुपाती नियतांक σ को स्टेफॉन-बोल्‍ज़मान स्थिरांक अथवा स्टेफॉन नियतांक कहा जाता है जिसे अन्य ज्ञात मूलभूत भौतिक नियतांकों से व्युत्पन किया जाता है। इसका मान निम्न होता है: \sigma.

नई!!: उष्मागतिकी और स्टेफॉन वोल्‍ज़मान नियम · और देखें »

स्थैतिककल्प प्रक्रम

ऊष्मागतिकी में स्थैतिककल्प प्रक्रम (quasistatic process) उन ऊष्मागतिक प्रक्रमों को कहते हैं जो 'अनन्त मन्द' गति से चलते हैं। वास्तव में कोई भी प्रक्रम पूर्णतः स्थैतिककल्प नहीं होता। .

नई!!: उष्मागतिकी और स्थैतिककल्प प्रक्रम · और देखें »

स्व-एकत्रण

स्व-एकत्रण ऐसे प्रक्रम हैं जो बिना किसी बाहरी हस्तक्षेप के, अव्यवस्था की स्थिति में विद्यमान प्रणाली से, पूर्व-उपस्थित घटकों के स्थानीय स्तर पर अंतःक्रियाओं के द्वारा स्व-संयोजित होते हैं। स्व-एकत्रण स्थैतिक या गतिक हो सकते हैं। स्थैतिक स्व-एकत्रण में किसी प्रणाली में संतुलन आता है, जिससे उसकी मुक्त उर्जा में कमी आती है। .

नई!!: उष्मागतिकी और स्व-एकत्रण · और देखें »

हेनरी कैवेंडिश

हेनरी कैवेंडिश (10 अक्टूबर 1731 - 24 फ़रवरी 1810) एक ब्रिटिश प्राकृतिक दार्शनिक, वैज्ञानिक, और एक महत्वपूर्ण प्रायोगिक और सैद्धांतिक रसायनज्ञ और भौतिक विज्ञानी था। कैवेंडिश उसकी हाइड्रोजन की खोज या जिन्हें वह "ज्वलनशील हवा" कहा करते थे के लिए विख्यात है।Cavendish, Henry (1766).

नई!!: उष्मागतिकी और हेनरी कैवेंडिश · और देखें »

हेल्महोल्ज़

हेल्महोल्ज़ हरमन फ़ॉन हल्महोल्ज़(31 अगस्त 1821 - 8 सितम्बर 1894) एक जर्मन भौतिकविद तथा चिकित्सक थे जिन्होंने आधुनिक विज्ञान के कई क्षेत्रों के विकास में योगदान दिया। ऊष्मागतिकी, विद्युतगतिकी और ऊर्जा संरक्षण के सिद्धांत के लिए उनका योगदान विशेष रूप से उल्लेखनीय है। शुद्ध पदार्थों के लिए उनका दिया गया एक सिद्धांत, जो अब उन्हीं के नाम से जाना जाता है, ऊष्मागतिकी के क्षेत्र में बहुत महत्वपूर्ण है। श्रेणी:जर्मनी के भौतिकविद.

नई!!: उष्मागतिकी और हेल्महोल्ज़ · और देखें »

जूल-टॉमसन प्रभाव

यदि किसी द्रव या गैस को किसी वाल्व या सछिद्र प्लग से होकर गुजारा जाता है और बाहर से इंसुलेट करके इसमें उष्मा का आदान-प्रदान नहीं होने दिया जाता तो उस तरल का ताप बदल जाता है जिसे उष्मागतिकी में जूल-थॉमसन प्रभाव (Joule–Thomson effect) के नाम से जाना जाता है। इसे "केल्विन-जूल प्रभाव" भी कहते हैं। उक्त प्रक्रम को थ्रॉटिलिंग कहा जाता है। सामान्य ताप पर हाइड्रोजन, हिलियम एवं नियान के अतिरिक्त सभी गैसें इस प्रभाव के कारण ठण्डी हो जातीं हैं। जूल थोम्सन एक रुधोस्म प्रक्रम है। जिसमें गैस का दाब उच्च से अचानक कम हो जाता है और रुधोस्म प्रक्रम की तरह ही तापमान कम हो जाता है। .

नई!!: उष्मागतिकी और जूल-टॉमसन प्रभाव · और देखें »

जेम्स प्रेस्कॉट जूल

जूल का ऊष्मा-उपकरण जेम्स प्रेस्कॉट जूल (अंग्रेजी: James Prescott Joule, जन्म: 24 दिसम्बर 1818 - मृत्यु: 11 अक्टूबर 1889) सैल्फोर्ड, लंकाशायर में जन्मे एक अंग्रेज भौतिकविज्ञानी और शराब निर्माता थे। .

नई!!: उष्मागतिकी और जेम्स प्रेस्कॉट जूल · और देखें »

विद्युत

वायुमण्डलीय विद्युत विद्युत आवेशों के मौजूदगी और बहाव से जुड़े भौतिक परिघटनाओं के समुच्चय को विद्युत (Electricity) कहा जाता है। विद्युत से अनेक जानी-मानी घटनाएं जुड़ी है जैसे कि तडित, स्थैतिक विद्युत, विद्युतचुम्बकीय प्रेरण, तथा विद्युत धारा। इसके अतिरिक्त, विद्युत के द्वारा ही वैद्युतचुम्बकीय तरंगो (जैसे रेडियो तरंग) का सृजन एवं प्राप्ति सम्भव होता है? विद्युत के साथ चुम्बकत्व जुड़ी हुई घटना है। विद्युत आवेश वैद्युतचुम्बकीय क्षेत्र पैदा करते हैं। विद्युत क्षेत्र में रखे विद्युत आवेशों पर बल लगता है। समस्त विद्युत का आधार इलेक्ट्रॉन हैं। इलेक्ट्रानों के हस्तानान्तरण के कारण ही कोई वस्तु आवेशित होती है। आवेश की गति ही विद्युत धारा है। विद्युत के अनेक प्रभाव हैं जैसे चुम्बकीय क्षेत्र, ऊष्मा, रासायनिक प्रभाव आदि। जब विद्युत और चुम्बकत्व का एक साथ अध्ययन किया जाता है तो इसे विद्युत चुम्बकत्व कहते हैं। विद्युत को अनेकों प्रकार से परिभाषित किया जा सकता है किन्तु सरल शब्दों में कहा जाये तो विद्युत आवेश की उपस्थिति तथा बहाव के परिणामस्वरूप उत्पन्न उस सामान्य अवस्था को विद्युत कहते हैं जिसमें अनेकों कार्यों को सम्पन्न करने की क्षमता होती है। विद्युत चल अथवा अचल इलेक्ट्रान या प्रोटान से सम्बद्ध एक भौतिक घटना है। किसी चालक में विद्युत आवेशों के बहाव से उत्पन्न उर्जा को विद्युत कहते हैं। .

नई!!: उष्मागतिकी और विद्युत · और देखें »

विशाल अणुकणिका रसायन शास्त्र

विशाल अणुकणिका संयोजन का एक उदाहरण, जा़न-मारी लैह्न और साथियों द्वारा प्रतिवेदित (Angew. Chem., Int. Ed. Engl. 1996, 35, 1838-1840.) cucurbit10uril डे और साथियों द्वारा प्रतिवेदित (Angew. Chem. Int. Ed., 2002, 275-277.) विशाल-अणुकणिका रासायन शास्त्र, रसायन शास्त्र का वह शाखा़ है, जिसमे अणुकणिकाओं के बीच गैर सह-संयुज बोन्डिंग का अध्ययन किया जाता है। सामान्य तौर पर रसायन शास्त्र में ध्यान सह-संयुज बोन्डिंग पर रहा है, किन्तु विशाल-अणुकणिका रासायन शास्त्र में ध्यान अणुकणिकाओं के बीच शक्तिहीन और उत्त्क्रमात्मक अंतःक्रियाओं पर होता है। ये शक्तियाँ हैं हाइड्रोजन बाँड, धातु तालमेल, जल विरोधी बल, वॉन डर वॉल बल, pi-pi अंतःक्रिया और स्थिरविद्युत प्रभावें। यह शास्त्र महत्वपूर्ण सिद्धांतों का स्पष्टीकरण करता है, जैसे कि आणुविक स्व-संयोजन, रासायनिक बलन, आणुविक अभिज्ञान, परिचारक-अतिथि रसायन, यांत्र-आलिंगित आणुविक ढांचे और गतिक संयुज रसायन। गैर सह-संयुज का अध्ययन आवश्यक है जैविक प्रकृयाओं को समझने के लिये। इस अनुसन्धान में जीवाणु ही अकसर प्रयोगशालाएँ होंतीं हैं। इन प्रकृयाओं से नये तकनीकों के आविष्कार के लिये, जिनका प्रयोग नैनोतकनीकी मे किया जा सकता है। .

नई!!: उष्मागतिकी और विशाल अणुकणिका रसायन शास्त्र · और देखें »

व्यावहारिक गणित

वाहन को शहर में एक स्थान से दूसरे स्थान पर कम से कम समय में ले जाने के लिए गणित का उपयोग करना पड़ सकता है। इसके लिए सांयोगिक इष्टतमीकरण (combinatorial optimization) तथा पूर्णांक प्रोग्रामन (integer programming) का उपयोग करना पड़ सकता है। व्यावहारिक गणित (अनुप्रयुक्त गणित या प्रायोगिक गणित), गणित की वह शाखा है जो ज्ञान की अन्य विधाओं की समस्याओं को गणित के जुगाड़ों (तकनीकों) के प्रयोग से हल करने से सम्बन्ध रखती है। ऐतिहास दृष्टि से देखें तो भौतिक विज्ञानों (physical sciences) की आवश्यकताओं ने गणित की विभिन्न शाखाओं के विकास में महती भूमिका निभायी। उदाहरण के लिये तरल यांत्रिकी में गणित का उपयोग करने से एक हल्का एवं कम ऊर्जा से की खपत करने वाला वायुयान की डिजाइन की जा सकती है। बहुत पुरातन काल से ही विषयों में गणित सर्वाधिक उपयोगी रहा है। यूनानी लोग गणित को न केवल संख्याओं और दिक् (स्पेस) का बल्कि खगोलविज्ञान और संगीत का भी अध्ययन मानते थे। गणितसारसंग्रह के 'संज्ञाधिकार' में मंगलाचरण के पश्चात महान प्राचीन भारतीय गणितज्ञ महावीराचार्य ने बड़े ही मार्मिक ढंग से गणित की प्रशंशा की है और गणित के अनेकानेक उपयोगों को गिनाया है- आज के 4000 वर्ष पहले बेबीलोन तथा मिस्र सभ्यताएँ गणित का इस्तेमाल पंचांग (कैलेंडर) बनाने के लिए किया करती थीं जिससे उन्हें पूर्व जानकारी रहती थी कि कब फसल की बुआई की जानी चाहिए या कब नील नदी में बाढ़ आएगी। अंकगणित का प्रयोग व्यापार में रुपयों-पैसों और वस्तुओं के विनिमय या हिसाब-किताब रखने के लिए किया जाता था। ज्यामिति का इस्तेमाल खेतों के चारों तरफ की सीमाओं के निर्धारण तथा पिरामिड जैसे स्मारकों के निर्माण में होता था। अपने दैनिक जीवन में रोजाना ही हम गणित का इस्तेमाल करते हैं-उस वक्त जब समय जानने के लिए हम घड़ी देखते हैं, अपने खरीदे गए सामान या खरीदारी के बाद बचने वाली रेजगारी का हिसाब जोड़ते हैं या फिर फुटबाल टेनिस या क्रिकेट खेलते समय बनने वाले स्कोर का लेखा-जोखा रखते हैं। व्यवसाय और उद्योगों से जुड़ी लेखा संबंधी संक्रियाएं गणित पर ही आधारित हैं। बीमा (इंश्योरेंस) संबंधी गणनाएं तो अधिकांशतया ब्याज की चक्रवृद्धि दर पर ही निर्भर है। जलयान या विमान का चालक मार्ग के दिशा-निर्धारण के लिए ज्यामिति का प्रयोग करता है। सर्वेक्षण का तो अधिकांश कार्य ही त्रिकोणमिति पर आधारित होता है। यहां तक कि किसी चित्रकार के आरेखण कार्य में भी गणित मददगार होता है, जैसे कि संदर्भ (पर्सपेक्टिव) में जिसमें कि चित्रकार को त्रिविमीय दुनिया में जिस तरह से इंसान और वस्तुएं असल में दिखाई पड़ते हैं, उन्हीं का तदनुरूप चित्रण वह समतल धरातल पर करता है। संगीत में स्वरग्राम तथा संनादी (हार्मोनी) और प्रतिबिंदु (काउंटरपाइंट) के सिद्धांत गणित पर ही आश्रित होते हैं। गणित का विज्ञान में इतना महत्व है तथा विज्ञान की इतनी शाखाओं में इसकी उपयोगिता है कि गणितज्ञ एरिक टेम्पल बेल ने इसे ‘विज्ञान की साम्राज्ञी और सेविका’ की संज्ञा दी है। किसी भौतिकविज्ञानी के लिए अनुमापन तथा गणित का विभिन्न तरीकों का बड़ा महत्व होता है। रसायनविज्ञानी किसी वस्तु की अम्लीयता को सूचित करने वाले पी एच (pH) मान के आकलन के लिए लघुगणक का इस्तेमाल करते हैं। कोणों और क्षेत्रफलों के अनुमापन द्वारा ही खगोलविज्ञानी सूर्य, तारों, चंद्र और ग्रहों आदि की गति की गणना करते हैं। प्राणीविज्ञान में कुछ जीव-जन्तुओं के वृद्धि-पैटर्नों के विश्लेषण के लिए विमीय विश्लेषण की मदद ली जाती है। जैसे-जैसे खगोलीय तथा काल मापन संबंधी गणनाओं की प्रामाणिकता में वृद्धि होती गई, वैसे-वैसे नौसंचालन भी आसान होता गया तथा क्रिस्टोफर कोलम्बस और उसके परवर्ती काल से मानव सुदूरगामी नए प्रदेशों की खोज में घर से निकल पड़ा। साथ ही, आगे के मार्ग का नक्शा भी वह बनाता गया। गणित का उपयोग बेहतर किस्म के समुद्री जहाज, रेल के इंजन, मोटर कारों से लेकर हवाई जहाजों के निर्माण तक में हुआ है। राडार प्रणालियों की अभिकल्पना तथा चांद और ग्रहों आदि तक अन्तरिक्ष यान भेजने में भी गणित से काम लिया गया है। .

नई!!: उष्मागतिकी और व्यावहारिक गणित · और देखें »

गणितीय भौतिकी

गणितीय भौतिकी (Mathematical physics) भौतिकी की समस्याओं के समाधान के लिये गणितीय विधियों के विकास से संबन्धित है। 'गणितीय भौतिकी पत्रिका' (Journal of Mathematical Physics) इस विषय इस तरह परिभाषित करती है- .

नई!!: उष्मागतिकी और गणितीय भौतिकी · और देखें »

गति विज्ञान

गति विज्ञान (Dynamics) अनुप्रयुक्त गणित की यह शाखा पिंडों की गति से तथा इन गतियों को नियमित करनेवाले बलों से संबद्ध है। गतिविज्ञान को दो भागों में अंतिर्विभक्त किया जा सकता है। पहला शुद्धगतिकी (Kinematics), जिसमें माप तथा यथातथ्य चित्रण की दृष्टि से गति का अध्ययन किया जाता है, तथा दूसरा बलगतिकी (Kinetics) अथवा वास्तविक गति विज्ञान, जो कारणों अथवा गतिनियमों से संबद्ध है। व्यापक दृष्टि से दोनों दृष्टिकोण संभव हैं। पहला गतिविज्ञान को ऐसे विज्ञान के रूप में प्रस्तुत करता है जिसका निर्माण परीक्षण की प्रक्रियाओं (प्रयोगों) के आधार पर तथ्योपस्थापन (आगम, अनुमान) द्वारा हुआ है। तदनुसार गति विज्ञान में गतिनियम यूक्लिड के स्वयंसिद्धों का स्थान ग्रहण करते हैं। दावा यह है कि प्रयोगों द्वारा इन नियमों की परीक्षा की जा सकती है, परंतु यह भी निश्चित है कि व्यावहारिक कठिनाइयों के कारण कोई सैद्धांतिक नियम यथातथ्य रूप में प्रकाशित नहीं हो पाता है। इन नियमों को प्रमाणित कर सकने में व्यावहारिक कठिनाइयों के अतिरिक्त कुछ तर्कविषयक बाधाएँ भी हैं, जो इस स्थिति को दूषित अथवा त्रुटिपूर्ण बना देती हैं। इन कठिनाइयों का परिहार किया जा सकता है, यदि हम दूसरा दृष्टिकोण अपनाएँ। उक्त दृष्टिकोण के अनुसार गतिविज्ञान शुद्ध अमूर्त विज्ञान (abstract science) है, जिसके समस्त नियम कुछ आधारभूत कल्पनाओं से निकाल जा सकते हैं। .

नई!!: उष्मागतिकी और गति विज्ञान · और देखें »

गिल्बर्ट न्यूटन ल्यूइस

गिल्बर्ट ल्युइस गिल्बर्ट न्यूटन ल्यूइस (Gilbert Newton Lewis; सन् १८७५-१९४६) अमेरिका के रसायनज्ञ थे जो सहसंयोजक बंध की खोज एवं इलेक्ट्रान-युग्म के काँसेप्ट देने के लिए प्रसिद्ध हैं। ल्युइस ने ऊष्मागतिकी, प्रकाशरसायन, तथा समस्थानिक विलगन (आइसोटोप सेपरेशन) पर भी काम किया तथा अम्ल और क्षार का कांसेप्ट भी दिया। ल्युइस का जन्म मैसाचुसेट्स प्रदेश के बोस्टन नगर के पास हुआ था। आप हारवार्ड विश्वविद्यालय के स्नातक थे और यहीं से सन् १८९९ में आपने पी-एच.

नई!!: उष्मागतिकी और गिल्बर्ट न्यूटन ल्यूइस · और देखें »

गैसों का अणुगति सिद्धान्त

किसी आदर्श एक-परमाणवीय गैस का ताप उसके परमाणुओं की औसत गतिज उर्जा का परोक्ष मापन है। इस एनिमेशन में गैस के परमाणुओ, उनके बीच की दूरी एवं परमाणुओं के चाल को वास्तविक मान से कम या ज्यादा रखा गया है ताकि देखकर समझने में सुविधा हो। गैसों का अणुगति सिद्धान्त (kinetic theory of gases) गैसों के समष्टिगत (मैक्रोस्कोपिक) गुणों (दाब, ताप आदि) को समझने के लिये एक सरलीकृत मॉडल है। सार रूप में यह सिद्धान्त कहता है कि गैसों का दाब उनके अणुओं के बीच के स्थैतिक प्रतिकर्षण (static repulsion) के कारण नहीं है (जैसा कि न्यूटन का विचार था), बल्कि गतिशील अणुओं के आपसी टकराव (collision) का परिणाम है। .

नई!!: उष्मागतिकी और गैसों का अणुगति सिद्धान्त · और देखें »

आन्तरिक ऊर्जा

ऊष्मागतिकी में, किसी निकाय में अंतर्विष्‍ट (contained) ऊर्जा को उस निकाय की आन्तरिक ऊर्जा (internal energy) कहते हैं। ध्यान देने योग्य है कि आन्तरिक ऊर्जा में उस निकाय की गतिज ऊर्जा और स्थितिज ऊर्जा सम्मिलित नहीं की जाती। 'कुल' आन्तरिक ऊर्जा U को नहीं मापा जा सकता किन्तु आन्तरिक ऊर्जा में परिवर्तन \Delta U को मापा जा सकता है। जहाँ .

नई!!: उष्मागतिकी और आन्तरिक ऊर्जा · और देखें »

इलेक्ट्रॉन वोल्ट

इलेक्ट्रॉन वोल्ट (चिन्ह eV) ऊर्जा की इकाई है। यह गतिज ऊर्जा की वह मात्रा है, जो एक इलेक्ट्रॉन द्वारा निर्वात में एक वोल्ट का विभवांतर पार करने पर प्राप्त की जाती है। सरल शब्दों में, यह 1 वोल्ट तथा 1 एलेक्ट्रानिक आवेश (e) के गुणनफल के बराबर होती है, जहाँ एक वोल्ट .

नई!!: उष्मागतिकी और इलेक्ट्रॉन वोल्ट · और देखें »

कार्नो प्रमेय

कार्नो प्रमेय (Carnot's theorem) किसी ऊष्मा इंजन की अधिकतम क्षमता की सीमा बताने वाला सिद्धान्त है। इसे सन् १८२४ में सादी कार्नो ने प्रतिपादित किया था। इसे 'कार्नो का नियम' भी कहते हैं। कार्नो प्रमेय के अनुसार.

नई!!: उष्मागतिकी और कार्नो प्रमेय · और देखें »

कार्य (ऊष्मागतिकी)

ऊष्मागतिकी के सन्दर्भ में, किसी निकाय द्वारा अपने परिवेश (surroundings) को जितनी ऊर्जा स्थानान्तरित की जाती है, उसे उस निकाय द्वारा किया गया कार्य कहते हैं। .

नई!!: उष्मागतिकी और कार्य (ऊष्मागतिकी) · और देखें »

क्रांतिक बिन्दु

ऊष्मागतिकी में क्रान्तिक बिन्दु (critical point) या कांतिक अवस्था (critical state), प्रावस्था-साम्य वक्र (phase equilibrium curve) का अन्तिम बिन्दु होता है। श्रेणी:ऊष्मागतिकी.

नई!!: उष्मागतिकी और क्रांतिक बिन्दु · और देखें »

अनुप्रयुक्त विज्ञान

विज्ञान की वे शाखायें जो पहले से विद्यमान वैज्ञानिक ज्ञान का का उपयोग और अधिक व्यावहारिक कार्यों (जैसे प्रौद्योगिकी, अनुसंधान आदि) के सम्पादन के लिये करतीं हैं, उन्हें अनुप्रयुक्त विज्ञान (applied science) कहते हैं। 'शुद्ध विज्ञान', अनुप्रयुक्त विज्ञान का उल्टा है जो प्रकृति की परिघटनाओं की व्याख्या करने एवं उनका पूर्वानुमान लगाने आदि का कार्य करता इंजीनीयरिंग (अभियांत्रिकी) की विद्या अनुप्रयुक्त विज्ञान है। अनुप्रयुक्त विज्ञान टेक्नोलोजी विकास के लिये महत्वपूर्ण्ण है। औद्योगिक क्षेत्र में इसे 'अनुसंधान और विकास' (R&D) कहते हैं। .

नई!!: उष्मागतिकी और अनुप्रयुक्त विज्ञान · और देखें »

अभियान्त्रिकी

लोहे का 'कड़ा' (O-ring): कनाडा के इंजिनियरों का परिचय व गौरव-चिह्न सन् 1904 में निर्मित एक इंजन की डिजाइन १२ जून १९९८ को अंतरिक्ष स्टेशन '''मीर''' अभियान्त्रिकी (Engineering) वह विज्ञान तथा व्यवसाय है जो मानव की विविध जरूरतों की पूर्ति करने में आने वाली समस्याओं का व्यावहारिक समाधान प्रस्तुत करता है। इसके लिये वह गणितीय, भौतिक व प्राकृतिक विज्ञानों के ज्ञानराशि का उपयोग करती है। इंजीनियरी भौतिक वस्तुओं और सेवाओं का उत्पादन करती है; औद्योगिक प्रक्रमों का विकास एवं नियंत्रण करती है। इसके लिये वह तकनीकी मानकों का प्रयोग करते हुए विधियाँ, डिजाइन और विनिर्देश (specifications) प्रदान करती है। .

नई!!: उष्मागतिकी और अभियान्त्रिकी · और देखें »

अंतरिक्ष विज्ञान

गैलेक्सी के एक भाग को प्रदर्शित करता हुआ एक तस्वीर अंतरिक्ष विज्ञान एक व्यापक शब्द है जो ब्रह्मांड के अध्ययन से जुड़े विभिन्न विज्ञान क्षेत्रों का वर्णन करता है तथा सामान्य तौर पर इसका अर्थ "पृथ्वी के अतिरिक्त" तथा "पृथ्वी के वातावरण से बाहर" भी है। मूलतः, इन सभी क्षेत्रों को खगोल विज्ञान का हिस्सा माना गया था। हालांकि, हाल के वर्षों में खगोल के कुछ क्षेत्रों, जैसे कि खगोल भौतिकी, का इतना विस्तार हुआ है कि अब इन्हें अपनी तरह का एक अलग क्षेत्र माना जाता है। कुल मिला कर आठ श्रेणियाँ हैं, जिनका वर्णन अलग से किया जा सकता है; खगोल भौतिकी, गैलेक्सी विज्ञान, तारकीय विज्ञान, पृथ्वी से असंबंधित ग्रह विज्ञान, अन्य ग्रहों का जीव विज्ञान, एस्ट्रोनॉटिक्स/ अंतरिक्ष यात्रा, अंतरिक्ष औपनिवेशीकरण और अंतरिक्ष रक्षा.

नई!!: उष्मागतिकी और अंतरिक्ष विज्ञान · और देखें »

यहां पुनर्निर्देश करता है:

ताप गतिकी, थर्मोडाएनामिक्स, रसायन ऊष्मागतिकी, ऊष्मागतिकी, ऊष्मगतिकी, उष्मागति शास्त्र, उष्मागतिशास्त्र, उष्मगतिकी

निवर्तमानआने वाली
अरे! अब हम फेसबुक पर हैं! »