हम Google Play स्टोर पर Unionpedia ऐप को पुनर्स्थापित करने के लिए काम कर रहे हैं
🌟हमने बेहतर नेविगेशन के लिए अपने डिज़ाइन को सरल बनाया!
Instagram Facebook X LinkedIn

लियोनार्ड ओइलर और वैश्‍लेषिक ज्यामिति

शॉर्टकट: मतभेद, समानता, समानता गुणांक, संदर्भ

लियोनार्ड ओइलर और वैश्‍लेषिक ज्यामिति के बीच अंतर

लियोनार्ड ओइलर vs. वैश्‍लेषिक ज्यामिति

लियोनार्ड ओइलर लियोनार्ड ओइलर (Leonhard Euler; १५ अप्रैल १७०७, बाज़ेल - १८ सितंबर १७८३) एक स्विस गणितज्ञ थे। ये जोहैन बेर्नूली के शिष्य थे। गणित के संकेतों को भी ऑयलर की देन अपूर्व है। इन्होंने संकेतों में अनेक संशोधन करके त्रिकोणमितीय सूत्रों को क्रमबद्ध किया। 1734 ई. में ऑयलर ने x के किसी फलन के लिए f (x), 1728 ई. में लघुगणकों के प्राकृत आधार के लिए e, 1750 ई. में अर्ध-परिमिति के लिए s, 1755 ई. में योग के लिए Σ और काल्पनिक ईकाई के लिए i संकेतों का प्रचलन किया। 1766 ई. में ये अंधे हो गए, परंतु मृत्यु पर्यंत (18 सितंबर 1783 ई.) शोधकार्य में संलग्न रहे। . कार्तीय (कार्टीजियन) निर्देशांक प्रणाली 17वीं शताब्दी के मध्य में फ्रांसीसी गणितज्ञ रेने देकार्त (Descartes) ने ज्यामिति में बीजगणित का प्रयोग कर इसे बहुत शक्तिशाली बना दिया। उसने पहले दो काटती हुई रेखाएँ लीं, जिन्हें अक्ष कहते हैं। किसी बिंदु की इन रेखाओं के समांतर नापी हुई दूरी दो संख्याओं य र से उसका स्थान निश्चय किया। ये रेखाएँ बिंदु के निर्देशांक कहलाती हैं। इन निर्देशांकों की सहायता से प्रत्येक ज्यामितिय तथ्य को बीजगणितीय समीकरण द्वारा प्रदर्शित किया जा सकता है। इस ज्यामिति का कई दिशाओं में विकास हुआ। पहली दशा में तो ज्यामिति का व्यापक रूप सामने आया, जैसे एक घात का समीकरण एक सरल रेखा प्रदर्शित करता है। इसी प्रकार दो घात का समीकरण एक शांकव (conic) प्रदर्शित करता है। इसी प्रकार तीन, चार और उच्चतर घातों के समीकरणों का अध्ययन होने लगा और उनके संगत वक्रों के गुणों का विवेचन पहले से बहुत सरल हो गया। तल के वक्रों तक ही नहीं, अवकाश (space) के वक्रों का भी अध्ययन संभव हो गया। इसके लिये एक बिंदुगामी तीन समतलों से किसी बिंदु की दूरियों य र ल (x, y, z) न उसका स्थान निश्चित करते हैं और प्रत्येक बिंदुपथ को य, र, ल (x, y, z) में एक समीकरण द्वारा प्रदर्शित करते हैं। इन समीकरणों के विवेचन से तलों ओर वक्रों के गुणों का अध्ययन सरलता से होता है। दूसरी दिशा में रचना संबंधी प्रश्नों का हल तथा क्रियाएँ बहुत सरल हो गईं। ये क्रियाएँ केवल कुछ समीकरणों के हल पर ही निर्भर हैं, जिसमें बहुत व्यापक प्रश्न सरलता से हल हो जाते हैं; जैसे यदि रेखा (ax + by + c .

लियोनार्ड ओइलर और वैश्‍लेषिक ज्यामिति के बीच समानता

लियोनार्ड ओइलर और वैश्‍लेषिक ज्यामिति आम में 0 बातें हैं (यूनियनपीडिया में)।

सूची के ऊपर निम्न सवालों के जवाब

लियोनार्ड ओइलर और वैश्‍लेषिक ज्यामिति के बीच तुलना

लियोनार्ड ओइलर 9 संबंध है और वैश्‍लेषिक ज्यामिति 5 है। वे आम 0 में है, समानता सूचकांक 0.00% है = 0 / (9 + 5)।

संदर्भ

यह लेख लियोनार्ड ओइलर और वैश्‍लेषिक ज्यामिति के बीच संबंध को दर्शाता है। जानकारी निकाला गया था, जिसमें से एक लेख का उपयोग करने के लिए, कृपया देखें: