हम Google Play स्टोर पर Unionpedia ऐप को पुनर्स्थापित करने के लिए काम कर रहे हैं
🌟हमने बेहतर नेविगेशन के लिए अपने डिज़ाइन को सरल बनाया!
Instagram Facebook X LinkedIn

गणित का इतिहास और वैश्‍लेषिक ज्यामिति

शॉर्टकट: मतभेद, समानता, समानता गुणांक, संदर्भ

गणित का इतिहास और वैश्‍लेषिक ज्यामिति के बीच अंतर

गणित का इतिहास vs. वैश्‍लेषिक ज्यामिति

ब्राह्मी अंक, पहली शताब्दी के आसपास अध्ययन का क्षेत्र जो गणित के इतिहास के रूप में जाना जाता है, प्रारंभिक रूप से गणित में अविष्कारों की उत्पत्ति में एक जांच है और कुछ हद तक, अतीत के अंकन और गणितीय विधियों की एक जांच है। आधुनिक युग और ज्ञान के विश्व स्तरीय प्रसार से पहले, कुछ ही स्थलों में नए गणितीय विकास के लिखित उदाहरण प्रकाश में आये हैं। सबसे प्राचीन उपलब्ध गणितीय ग्रन्थ हैं, प्लिमपटन ३२२ (Plimpton 322)(बेबीलोन का गणित (Babylonian mathematics) सी.१९०० ई.पू.) मास्को गणितीय पेपाइरस (Moscow Mathematical Papyrus)(इजिप्ट का गणित (Egyptian mathematics) सी.१८५० ई.पू.) रहिंद गणितीय पेपाइरस (Rhind Mathematical Papyrus)(इजिप्ट का गणित सी.१६५० ई.पू.) और शुल्बा के सूत्र (Shulba Sutras)(भारतीय गणित सी. ८०० ई.पू.)। ये सभी ग्रन्थ तथाकथित पाईथोगोरस की प्रमेय (Pythagorean theorem) से सम्बंधित हैं, जो मूल अंकगणितीय और ज्यामिति के बाद गणितीय विकास में सबसे प्राचीन और व्यापक प्रतीत होती है। बाद में ग्रीक और हेल्लेनिस्टिक गणित (Greek and Hellenistic mathematics) में इजिप्त और बेबीलोन के गणित का विकास हुआ, जिसने विधियों को परिष्कृत किया (विशेष रूप से प्रमाणों (mathematical rigor) में गणितीय निठरता (proofs) का परिचय) और गणित को विषय के रूप में विस्तृत किया। इसी क्रम में, इस्लामी गणित (Islamic mathematics) ने गणित का विकास और विस्तार किया जो इन प्राचीन सभ्यताओं में ज्ञात थी। फिर गणित पर कई ग्रीक और अरबी ग्रंथों कालैटिन में अनुवाद (translated into Latin) किया गया, जिसके परिणाम स्वरुप मध्यकालीन यूरोप (medieval Europe) में गणित का आगे विकास हुआ। प्राचीन काल से मध्य युग (Middle Ages) के दौरान, गणितीय रचनात्मकता के अचानक उत्पन्न होने के कारण सदियों में ठहराव आ गया। १६ वीं शताब्दी में, इटली में पुनर् जागरण की शुरुआत में, नए गणितीय विकास हुए. कार्तीय (कार्टीजियन) निर्देशांक प्रणाली 17वीं शताब्दी के मध्य में फ्रांसीसी गणितज्ञ रेने देकार्त (Descartes) ने ज्यामिति में बीजगणित का प्रयोग कर इसे बहुत शक्तिशाली बना दिया। उसने पहले दो काटती हुई रेखाएँ लीं, जिन्हें अक्ष कहते हैं। किसी बिंदु की इन रेखाओं के समांतर नापी हुई दूरी दो संख्याओं य र से उसका स्थान निश्चय किया। ये रेखाएँ बिंदु के निर्देशांक कहलाती हैं। इन निर्देशांकों की सहायता से प्रत्येक ज्यामितिय तथ्य को बीजगणितीय समीकरण द्वारा प्रदर्शित किया जा सकता है। इस ज्यामिति का कई दिशाओं में विकास हुआ। पहली दशा में तो ज्यामिति का व्यापक रूप सामने आया, जैसे एक घात का समीकरण एक सरल रेखा प्रदर्शित करता है। इसी प्रकार दो घात का समीकरण एक शांकव (conic) प्रदर्शित करता है। इसी प्रकार तीन, चार और उच्चतर घातों के समीकरणों का अध्ययन होने लगा और उनके संगत वक्रों के गुणों का विवेचन पहले से बहुत सरल हो गया। तल के वक्रों तक ही नहीं, अवकाश (space) के वक्रों का भी अध्ययन संभव हो गया। इसके लिये एक बिंदुगामी तीन समतलों से किसी बिंदु की दूरियों य र ल (x, y, z) न उसका स्थान निश्चित करते हैं और प्रत्येक बिंदुपथ को य, र, ल (x, y, z) में एक समीकरण द्वारा प्रदर्शित करते हैं। इन समीकरणों के विवेचन से तलों ओर वक्रों के गुणों का अध्ययन सरलता से होता है। दूसरी दिशा में रचना संबंधी प्रश्नों का हल तथा क्रियाएँ बहुत सरल हो गईं। ये क्रियाएँ केवल कुछ समीकरणों के हल पर ही निर्भर हैं, जिसमें बहुत व्यापक प्रश्न सरलता से हल हो जाते हैं; जैसे यदि रेखा (ax + by + c .

गणित का इतिहास और वैश्‍लेषिक ज्यामिति के बीच समानता

गणित का इतिहास और वैश्‍लेषिक ज्यामिति आम में 2 बातें हैं (यूनियनपीडिया में): बीजगणित, शंकु-परिच्छेद

बीजगणित

बीजगणित (संस्कृत ग्रन्थ) भी देखें। ---- आर्यभट बीजगणित (algebra) गणित की वह शाखा जिसमें संख्याओं के स्थान पर चिन्हों का प्रयोग किया जाता है। बीजगणित चर तथा अचर राशियों के समीकरण को हल करने तथा चर राशियों के मान निकालने पर आधारित है। बीजगणित के विकास के फलस्वरूप निर्देशांक ज्यामिति व कैलकुलस का विकास हुआ जिससे गणित की उपयोगिता बहुत बढ़ गयी। इससे विज्ञान और तकनीकी के विकास को गति मिली। महान गणितज्ञ भास्कराचार्य द्वितीय ने कहा है - अर्थात् मंदबुद्धि के लोग व्यक्ति गणित (अंकगणित) की सहायता से जो प्रश्न हल नहीं कर पाते हैं, वे प्रश्न अव्यक्त गणित (बीजगणित) की सहायता से हल कर सकते हैं। दूसरे शब्दों में, बीजगणित से अंकगणित की कठिन समस्याओं का हल सरल हो जाता है। बीजगणित से साधारणतः तात्पर्य उस विज्ञान से होता है, जिसमें संख्याओं को अक्षरों द्वारा निरूपित किया जाता है। परंतु संक्रिया चिह्न वही रहते हैं, जिनका प्रयोग अंकगणित में होता है। मान लें कि हमें लिखना है कि किसी आयत का क्षेत्रफल उसकी लंबाई तथा चौड़ाई के गुणनफल के समान होता है तो हम इस तथ्य को निमन प्रकार निरूपित करेंगे— बीजगणिति के आधुनिक संकेतवाद का विकास कुछ शताब्दी पूर्व ही प्रारंभ हुआ है; परंतु समीकरणों के साधन की समस्या बहुत पुरानी है। ईसा से 2000 वर्ष पूर्व लोग अटकल लगाकर समीकरणों को हल करते थे। ईसा से 300 वर्ष पूर्व तक हमारे पूर्वज समीकरणों को शब्दों में लिखने लगे थे और ज्यामिति विधि द्वारा उनके हल ज्ञात कर लेते थे। .

गणित का इतिहास और बीजगणित · बीजगणित और वैश्‍लेषिक ज्यामिति · और देखें »

शंकु-परिच्छेद

शांकवों की सूची, साइक्लोपीडिया, 1728 गणित में, किसी लम्ब वृत्तीय शंकु की एक समतल द्वारा परिच्छेद करने से प्राप्त वक्रों (curves) को शांकव या शंकु-परिच्छेद(conic section) कहते हैं।शांकव की एक अन्य परिभाषा के अनुसार शांकव (समतल मे) किसी एसे चर बिन्दु का बिन्दुपथ है जिसकी एक निर्धारित बिन्दु एवं एक निर्धारित रेखा से दूरियोँ का अनुपात हमेशा स्थिर (अच‍र) रहता है। इस परिभाषा का प्रयोग कर किसी भी निर्देशांक पद्धति‎ मे शांकव को एक गणितीय समीकरण के रूप मे प्राप्त कर सकते हैं .

गणित का इतिहास और शंकु-परिच्छेद · वैश्‍लेषिक ज्यामिति और शंकु-परिच्छेद · और देखें »

सूची के ऊपर निम्न सवालों के जवाब

गणित का इतिहास और वैश्‍लेषिक ज्यामिति के बीच तुलना

गणित का इतिहास 178 संबंध है और वैश्‍लेषिक ज्यामिति 5 है। वे आम 2 में है, समानता सूचकांक 1.09% है = 2 / (178 + 5)।

संदर्भ

यह लेख गणित का इतिहास और वैश्‍लेषिक ज्यामिति के बीच संबंध को दर्शाता है। जानकारी निकाला गया था, जिसमें से एक लेख का उपयोग करने के लिए, कृपया देखें: