लोगो
यूनियनपीडिया
संचार
Google Play पर पाएं
नई! अपने एंड्रॉयड डिवाइस पर डाउनलोड यूनियनपीडिया!
मुक्त
ब्राउज़र की तुलना में तेजी से पहुँच!
 

वर्ग समीकरण

सूची वर्ग समीकरण

गणित में दो घात वाले समीकरण को वर्ग समीकरण (quadratic equation) या द्विघात समीकरण कहते हैं। विज्ञान, तकनीकी एवं अन्य अनेक स्थितियों में किसी समस्या के समाधान के समय वर्ग समीकरण से अक्सर सामना पडता रहता है। इसलिये वर्ग समीकरण का हल बहुत महत्व रखता है। वर्ग समीकरण का सामान्य समीकरण(General Equation) इस प्रकार का होता है: यहाँ a ≠ 0.

13 संबंधों: चक्रवाल विधि, परवलय, ब्रह्मगुप्त, ब्राह्मस्फुटसिद्धान्त, बीजगणित का मौलिक प्रमेय, मूल, रेखीय समीकरण, समिश्र संख्या, घन फलन, वर्गमूल, वास्तविक संख्या, गणित, आर्यभट

चक्रवाल विधि

चक्रवाल विधि अनिर्धार्य वर्ग समीकरणों (indeterminate quadratic equations) को हल करने की चक्रीय विधि है। इसके द्वारा पेल के समीकरण का भी हल निकल जाता है। इसके आविष्कार का श्रेय प्राय भास्कर द्वितीय को दिया जाता है किन्तु कुछ लोग इसका श्रेय जयदेव (950 ~ 1000 ई) को भी देते हैं। इस विधि का नाम 'चक्रवाल' (चक्र की तरह वलयिय (भ्रमण)) इसलिए पड़ा है क्योंकि इसमें कुट्टक से गुण लब्धि के बाद पुनः वर्गप्रकृति और पुनः कुट्टक किया जाता है। ६२८ ई में ब्रह्मगुप्त ने x और y के सबसे छोटे पूर्णांकों के लिए इसका हल निकाला था। वे N के कुछ ही मानों के लिये इसका हल निकाल सके, सभी के लिये नहीं। जयदेव (गणितज्ञ) और भास्कर (१२वीं शताब्दी) ने चक्रवाल विधि का उपयोग करते हुए इस समीकरण का सबसे पहले हल प्रस्तुत किया था। उन्होने निम्नलिखित समीकरण का हल दिया है- उनके द्वारा निम्नलिखित हल दिया गया है- यह समस्या बहुट कठिन समस्या है क्योंकि x और y के मान बहुत बड़े आते हैं। इसकी कठिनाई का अनुमान इससे ही लगाया जा सकता है कि यूरोप में इसका हल विलियम ब्राउंकर (William Brouncker) ने १६५७-५८ में जाकर निकाला था। अपने बीजगणित नामक ग्रन्थ में भास्कराचार्य ने चक्रवाल विधि का वर्णन इस प्रकार किया है- .

नई!!: वर्ग समीकरण और चक्रवाल विधि · और देखें »

परवलय

परवलय और उससे संबंधित पारिभाषिक शब्द गणित में, परवलय एक द्विविमीय समतलीय वक्र है जो दर्पण-सममित होता है और यह अंग्रेज़ी अक्षर U के आकार का होता है। परवलय (पैराबोला) एक द्विमीय वक्र है जिसे कई तरह से परिभाषित किया जाता है। एक परिभाषा परवलय को शांकव के एक विशेष रूप में परिभाषित करती है। इसके अनुसार, परवलय वह शांकव है जिनकी उत्केन्द्रता १ के बराबर होती है। परवलय को बिन्दुपथ के रूप में परिभाषित किया जा सकता है। परवलय ऐसे बिन्दुओं का बिन्दुपथ है जिसकी किसी निश्चित रेखा से दूरी, किसी निश्चित बिन्दु से दूरी के बराबर होती है। यहाँ उस रेखा को नियता (डायरेक्ट्रिक्स) एवं उस बिन्दु को नाभि (फोकस) कहते हैं। उदाहरण के लिए, समीकरण x2 .

नई!!: वर्ग समीकरण और परवलय · और देखें »

ब्रह्मगुप्त

ब्रह्मगुप्त का प्रमेय, इसके अनुसार ''AF'' .

नई!!: वर्ग समीकरण और ब्रह्मगुप्त · और देखें »

ब्राह्मस्फुटसिद्धान्त

ब्राह्मस्फुटसिद्धान्त, ब्रह्मगुप्त की प्रमुख रचना है। यह संस्कृत मे है। इसकी रचना सन ६२८ के आसपास हुई। ध्यानग्रहोपदेशाध्याय को मिलाकर इसमें कुल पचीस (२५) अध्याय हैं। यह ग्रन्थ पूर्णतः काव्य रूप में लिखा गई है। 'ब्राह्मस्फुटसिद्धान्त' का अर्थ है - 'ब्रह्मगुप्त द्वारा स्फुटित (प्रकाशित) सिद्धान्त'। इस ग्रन्थ में अन्य बातों के अलावा गणित के निम्नलिखित विषय वर्णित हैं-.

नई!!: वर्ग समीकरण और ब्राह्मस्फुटसिद्धान्त · और देखें »

बीजगणित का मौलिक प्रमेय

बीजगणित का मौलिक प्रमेय (fundamental theorem of algebra) के अनुसार, एक चर वाले सभी बहुपदों का कम से कम एक मूल (रूट) अवश्य होता है। .

नई!!: वर्ग समीकरण और बीजगणित का मौलिक प्रमेय · और देखें »

मूल

मूल के कई अर्थ हो सकते हैं-.

नई!!: वर्ग समीकरण और मूल · और देखें »

रेखीय समीकरण

रेखीय समीकरणों का ग्राफ् पर निरुपण गणित मै रेखीय समीकरण एक एसा समीकरण होता है जिसमे चर की अधिकतम् घात एक होती है, इन समीकरणों को रेखीय समीकरण कहते है क्योंकि ये कार्तीय निर्देशांक पद्ध्ती मै एकसरल रेखा को निरुपित करते हैं। दो चरों x व y वाला एक सामन्य रेखीय समीकरण होता है, इस सबसे साधारण रूप मै m, रेखा की प्रवणता एवं नियतांक c रेखा द्वारा Y-अक्ष पर काटे गए अंत: खन्ड के बराबर होते हैं .

नई!!: वर्ग समीकरण और रेखीय समीकरण · और देखें »

समिश्र संख्या

किसी समिश्र संख्या का अर्गेन्ड आरेख पर प्रदर्शन गणित में समिश्र संख्याएँ (complex number) वास्तविक संख्याओं का विस्तार है। किसी वास्तविक संख्या में एक काल्पनिक भाग जोड़ देने से समिश्र संख्या बनती है। समिश्र संख्या के काल्पनिक भाग के साथ i जुड़ा होता है जो निम्नलिखित सम्बन्ध को संतुष्ट करती है: किसी भी समिश्र संख्या को a + bi, के रूप में व्यक्त किया जा सकता है जिसमें a और b दोनो ही वास्तविक संख्याएं हैं। a + bi में a को वास्तविक भाग तथा b को काल्पनिक भाग कहते हैं। उदाहरण: 3 + 4i एक समिश्र संख्या है। .

नई!!: वर्ग समीकरण और समिश्र संख्या · और देखें »

घन फलन

किसी घन फलन (जिसके तीनों मूल वास्तविक हैं) का आरेख गणित में निम्नलिखित स्वरूप वाले फलन को घन फलन (cubic function) या "त्रिघाती बहुपद" कहते हैं: यहाँ a अशून्य संख्या है। यह मानते हुए कि a ≠ 0 तथा ƒ(x) .

नई!!: वर्ग समीकरण और घन फलन · और देखें »

वर्गमूल

संख्या के साथ उसके वर्गमूल का आलेख गणित में किसी संख्या x का वर्गमूल (square root (\sqrt) या x^) वह संख्या (r) होती है जिसका वर्ग करने पर x प्राप्त होता है; अर्थात् यदि r‍‍2 .

नई!!: वर्ग समीकरण और वर्गमूल · और देखें »

वास्तविक संख्या

गणित में, वास्तविक संख्या सरल रेखा के अनुदिश किसी राशी को प्रस्तुत करने वाला मान है। वास्तविक संख्याओं में सभी परिमेय संख्यायें जैसे -5 एवं भिन्नात्मक संख्यायें जैसे 4/3 और सभी अपरिमेय संख्यायें जैसे √2 (1.41421356…, 2 का वर्गमूल, एक अप्रिमेय बीजीय संख्या) शामिल हैं। वास्तविक संख्याओं में अप्रिमेय संख्याओं को शामिल करने से इन्हें वास्तविक संख्या रेखा के रूप में एक रेखा पर निरुपित किये जा सकने वाले अनन्त बिन्दुओं से प्रस्तुत किया जा सकता है। श्रेणी:गणित *.

नई!!: वर्ग समीकरण और वास्तविक संख्या · और देखें »

गणित

पुणे में आर्यभट की मूर्ति ४७६-५५० गणित ऐसी विद्याओं का समूह है जो संख्याओं, मात्राओं, परिमाणों, रूपों और उनके आपसी रिश्तों, गुण, स्वभाव इत्यादि का अध्ययन करती हैं। गणित एक अमूर्त या निराकार (abstract) और निगमनात्मक प्रणाली है। गणित की कई शाखाएँ हैं: अंकगणित, रेखागणित, त्रिकोणमिति, सांख्यिकी, बीजगणित, कलन, इत्यादि। गणित में अभ्यस्त व्यक्ति या खोज करने वाले वैज्ञानिक को गणितज्ञ कहते हैं। बीसवीं शताब्दी के प्रख्यात ब्रिटिश गणितज्ञ और दार्शनिक बर्टेंड रसेल के अनुसार ‘‘गणित को एक ऐसे विषय के रूप में परिभाषित किया जा सकता है जिसमें हम जानते ही नहीं कि हम क्या कह रहे हैं, न ही हमें यह पता होता है कि जो हम कह रहे हैं वह सत्य भी है या नहीं।’’ गणित कुछ अमूर्त धारणाओं एवं नियमों का संकलन मात्र ही नहीं है, बल्कि दैनंदिन जीवन का मूलाधार है। .

नई!!: वर्ग समीकरण और गणित · और देखें »

आर्यभट

आर्यभट (४७६-५५०) प्राचीन भारत के एक महान ज्योतिषविद् और गणितज्ञ थे। इन्होंने आर्यभटीय ग्रंथ की रचना की जिसमें ज्योतिषशास्त्र के अनेक सिद्धांतों का प्रतिपादन है। इसी ग्रंथ में इन्होंने अपना जन्मस्थान कुसुमपुर और जन्मकाल शक संवत् 398 लिखा है। बिहार में वर्तमान पटना का प्राचीन नाम कुसुमपुर था लेकिन आर्यभट का कुसुमपुर दक्षिण में था, यह अब लगभग सिद्ध हो चुका है। एक अन्य मान्यता के अनुसार उनका जन्म महाराष्ट्र के अश्मक देश में हुआ था। उनके वैज्ञानिक कार्यों का समादर राजधानी में ही हो सकता था। अतः उन्होंने लम्बी यात्रा करके आधुनिक पटना के समीप कुसुमपुर में अवस्थित होकर राजसान्निध्य में अपनी रचनाएँ पूर्ण की। .

नई!!: वर्ग समीकरण और आर्यभट · और देखें »

यहां पुनर्निर्देश करता है:

वर्गसमीकरण

निवर्तमानआने वाली
अरे! अब हम फेसबुक पर हैं! »