लोगो
यूनियनपीडिया
संचार
Google Play पर पाएं
नई! अपने एंड्रॉयड डिवाइस पर डाउनलोड यूनियनपीडिया!
डाउनलोड
ब्राउज़र की तुलना में तेजी से पहुँच!
 

रीमान जीटा फलन

सूची रीमान जीटा फलन

रीमान जीटा फलन अथवा आयलर–रीमान जीटा फलन, ζ(s), उन सम्मिश्र चर s का फलन है जो अनन्त श्रेणी के संकलन में वैश्लेषिक हैं जो s के वास्तविक मान के 1 से अधिक होने पर अभिसारी होती है। सभी s के लिए ζ(s) व्यापक निरूपण नीचे दिया गया है। रीमान जीटा फलन विश्लेषी संख्या सिद्धान्त में मुख्य फलन के रूप में प्रयुक्त होता है और इसके अनुप्रयोग भौतिकी, प्रायिकता सिद्धांत और अनुप्रयुक्त सांख्यिकी में मिलते हैं। वास्तविक तर्क के फलन के रूप में, यह फलन १८वीं सदी के पूर्वार्द्ध में सम्मिश्र विश्लेषण का उपयोग किये बिना (क्योंकि उस समय यह उपलब्ध नहीं थी) पहली बार लियोनार्ड आयलर ने किया था। बर्नहार्ड रीमान ने 1859 में प्रकाशित अपने लेख "दिये गये परिमाण से छोटी अभाज्य संख्याओं पर" (मूल जर्मन: Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse) आयलर की परिभाषा सम्मिश्र चरों के लिए विस्तारित किया तथा फलनिक समीकरण और अनंतकी अनुवर्ती सिद्ध किया एवं शून्य व अभाज्य संख्याओं के बंटन में सम्बन्ध स्थापित किया। धनात्मक सम संख्याओं पर रीमान जीटा फलन के मान आयलर द्वारा अभिकलित किये गये। इनमें प्रथम ζ(2) बेसल समस्या का हल प्रदान करता है। सन् १९७९ में एपेरी ने ''ζ''(3) की अपरिमेयता सिद्ध की। नकारात्मक पूर्णांक बिन्दुओं के लिए भी आयलर के अनुसार परिमेय संख्यायें प्रतिरूपक के रूप में महत्त्वपूर्ण स्थान रखती हैं। डीरिख्ले श्रेणी, डीरिख्ले एल-फलन और एल-फलन के रूप में रीमान जीटा फलन के विभिन्न व्यापकीकरण ज्ञात हैं। .

16 संबंधों: डीरिख्ले श्रेणी, परिमेय संख्या, प्रायिकता सिद्धांत, फलन, फलनिक समीकरण, बर्नहार्ड रीमान, बेसल समस्या, भौतिक शास्त्र, मूल (फलन के), लियोनार्ड ओइलर, शुद्ध गणित, श्रेणी (गणित), सम्मिश्र विश्लेषण, सांख्यिकी, विश्लेषी संख्या सिद्धान्त, अटकल

डीरिख्ले श्रेणी

गणित में डीरिख्ले श्रेणी निम्न प्रकार की श्रेणी को कहा जाता है: जहाँ s सम्मिश्र और a सम्मिश्र अनुक्रम है। यह सामान्य डीरिख्ले श्रेणी की विशेष अवस्था है। डीरिख्ले श्रेणी विश्लेषी संख्या सिद्धान्त में विभिन्न प्रकार से महत्त्वपूर्ण भूमिका निभाती है। रीमान जीटा फलन की सबसे प्रचलित परिभाषा डीरिख्ले एल-फलन के रूप में डीरिख्ले श्रेणी है। श्रेणी का नामकरण पीटर गुस्ताफ लजन डीरिक्ले के सम्मान में रखा गया। .

नई!!: रीमान जीटा फलन और डीरिख्ले श्रेणी · और देखें »

परिमेय संख्या

यदि किसी वास्तविक संख्या को दो पूर्ण संख्याओं के अनुपात के रूप में व्यक्त किया जा सकता है तो उसे परिमेय संख्या (Rational number) कहते हैं। अर्थात कोई संख्या \frac, जहाँ a और b दोनों पूर्ण संख्याएं हैं और जहाँ b \ne 0, एक परिमेय संख्या है। १, २.५, ३/५, 0.७ आदि परिमेय संख्याओं के कुछ उदाहरण हैं। परिमेय संख्या से संबंधित प्रमेय- यदि x एक परिमेय संख्या है जिसका दशमलवीय विस्तार सांत (terminating) है। तब x को p बटा q के रूप में लिखा जा सकता है, जहाँ p तथा q असहभाज्य संख्याएँ हैं तथा q का अविभाज्य गुणन खंड 2-घात-n गुणे 5-घात-m के रूप में है जहाँ n और m गैर-ऋणात्मक पूर्णांक हैं। जो वास्तविक संख्याएं परिमेय नहीं होतीं, उन्हें अपरिमेय संख्या (Irrational number) कहते हैं; जैसे √२, पाई, e (प्राकृतिक लघुगणक का आधार), ८ का घनमूल आदि। श्रेणी:संख्या सिद्धान्त श्रेणी:प्राथमिक गणित * श्रेणी:भिन्न (गणित) श्रेणी:क्षेत्र सिद्धान्त.

नई!!: रीमान जीटा फलन और परिमेय संख्या · और देखें »

प्रायिकता सिद्धांत

प्रायिकता सिद्धांत (Probability theory) गणित की शाखा है जो यादृच्छ (रैंडम) परिघटनाओं के विश्लेषण से संबन्धित है। .

नई!!: रीमान जीटा फलन और प्रायिकता सिद्धांत · और देखें »

फलन

''X'' के किसी सदस्य का ''Y'' के केवल एक सदस्य से सम्बन्ध हो तो वह फलन है अन्यथा नहीं। ''Y''' के कुछ सदस्यों का '''X''' के किसी भी सदस्य से सम्बन्ध '''न''' होने पर भी फलन परिभाषित है। गणित में जब कोई राशि का मान किसी एक या एकाधिक राशियों के मान पर निर्भर करता है तो इस संकल्पना को व्यक्त करने के लिये फलन (function) शब्द का प्रयोग किया जाता है। उदाहरण के लिये किसी ऋण पर चक्रवृद्धि ब्याज की राशि मूलधन, समय एवं ब्याज की दर पर निर्भर करती है; इसलिये गणित की भाषा में कह सकते हैं कि चक्रवृद्धि ब्याज, मूलधन, ब्याज की दर तथा समय का फलन है। स्पष्ट है कि किसी फलन के साथ दो प्रकार की राशियां सम्बन्धित होती हैं -.

नई!!: रीमान जीटा फलन और फलन · और देखें »

फलनिक समीकरण

गणित में, फलनिक समीकरण (functional equation) किसी भी निहित रूप में फलन को निर्दिष्ट करने वाली समीकरण है। अक्सर, समीकरण किसी फलन (फलनों) के किसी बिन्दु पर मान को अन्य बिन्दुओं पर मान से सम्बद्ध करती है। उदाहरण के लिए, फलन के गुणधर्म उनके द्वारा संतुष्ट होने वाली फलनिक समीकरणों से ज्ञात किये जा सकते हैं। शब्द फलनिक समीकरण सामान्यतः उन समीकरणों के लिए प्रयुक्त किया जाता है जो सामान्यतः बीजगणितीय समीकरणों द्वारा लघूकृत नहीं किये जा सकते। .

नई!!: रीमान जीटा फलन और फलनिक समीकरण · और देखें »

बर्नहार्ड रीमान

जॉर्ज फ्रेडरिक बर्नहार्ड रीमान (Georg Friedrich Bernhard Riemann; १७ सितम्बर १८२६ - २० जुलाई १८६६) एक प्रतिभाशाली जर्मन गणितज्ञ थे। उन्होंने विश्लेषण, संख्या सिद्धान्त और अवकल ज्यामिति के क्षेत्र में प्रभावी योगदान दिया जिसका उपयोग सामान्य आपेक्षिकता के विकास में भी किया गया। .

नई!!: रीमान जीटा फलन और बर्नहार्ड रीमान · और देखें »

बेसल समस्या

बेसल समस्या संख्या सिद्धान्त से सम्बद्ध गणितीय विश्लेषण की समस्या है जो सर्वप्रथम पिएत्रो मंगोली ने १६४४ में दी और १७३४ में लियोनार्ड आयलर ने हल की। यह सर्वप्रथम द सेंट पीटर्सबर्ग एकेडेमी ऑफ़ साइंसेज (Петербургская Академия наук) में ५ दिसम्बर १७३५ को प्रकाशित हुई। बेसल समस्या प्राकृत संख्याओं के वर्ग के व्युत्क्रम के संकलन के बारे में है अर्थात अनन्त श्रेणी के योग का यथार्थ मान: \sum_^\infty \frac .

नई!!: रीमान जीटा फलन और बेसल समस्या · और देखें »

भौतिक शास्त्र

भौतिकी के अन्तर्गत बहुत से प्राकृतिक विज्ञान आते हैं भौतिक शास्त्र अथवा भौतिकी, प्रकृति विज्ञान की एक विशाल शाखा है। भौतिकी को परिभाषित करना कठिन है। कुछ विद्वानों के मतानुसार यह ऊर्जा विषयक विज्ञान है और इसमें ऊर्जा के रूपांतरण तथा उसके द्रव्य संबन्धों की विवेचना की जाती है। इसके द्वारा प्राकृत जगत और उसकी आन्तरिक क्रियाओं का अध्ययन किया जाता है। स्थान, काल, गति, द्रव्य, विद्युत, प्रकाश, ऊष्मा तथा ध्वनि इत्यादि अनेक विषय इसकी परिधि में आते हैं। यह विज्ञान का एक प्रमुख विभाग है। इसके सिद्धांत समूचे विज्ञान में मान्य हैं और विज्ञान के प्रत्येक अंग में लागू होते हैं। इसका क्षेत्र विस्तृत है और इसकी सीमा निर्धारित करना अति दुष्कर है। सभी वैज्ञानिक विषय अल्पाधिक मात्रा में इसके अंतर्गत आ जाते हैं। विज्ञान की अन्य शाखायें या तो सीधे ही भौतिक पर आधारित हैं, अथवा इनके तथ्यों को इसके मूल सिद्धांतों से संबद्ध करने का प्रयत्न किया जाता है। भौतिकी का महत्व इसलिये भी अधिक है कि अभियांत्रिकी तथा शिल्पविज्ञान की जन्मदात्री होने के नाते यह इस युग के अखिल सामाजिक एवं आर्थिक विकास की मूल प्रेरक है। बहुत पहले इसको दर्शन शास्त्र का अंग मानकर नैचुरल फिलॉसोफी या प्राकृतिक दर्शनशास्त्र कहते थे, किंतु १८७० ईस्वी के लगभग इसको वर्तमान नाम भौतिकी या फिजिक्स द्वारा संबोधित करने लगे। धीरे-धीरे यह विज्ञान उन्नति करता गया और इस समय तो इसके विकास की तीव्र गति देखकर, अग्रगण्य भौतिक विज्ञानियों को भी आश्चर्य हो रहा है। धीरे-धीरे इससे अनेक महत्वपूर्ण शाखाओं की उत्पत्ति हुई, जैसे रासायनिक भौतिकी, तारा भौतिकी, जीवभौतिकी, भूभौतिकी, नाभिकीय भौतिकी, आकाशीय भौतिकी इत्यादि। भौतिकी का मुख्य सिद्धांत "उर्जा संरक्षण का नियम" है। इसके अनुसार किसी भी द्रव्यसमुदाय की ऊर्जा की मात्रा स्थिर होती है। समुदाय की आंतरिक क्रियाओं द्वारा इस मात्रा को घटाना या बढ़ाना संभव नहीं। ऊर्जा के अनेक रूप होते हैं और उसका रूपांतरण हो सकता है, किंतु उसकी मात्रा में किसी प्रकार परिवर्तन करना संभव नहीं हो सकता। आइंस्टाइन के सापेक्षिकता सिद्धांत के अनुसार द्रव्यमान भी उर्जा में बदला जा सकता है। इस प्रकार ऊर्जा संरक्षण और द्रव्यमान संरक्षण दोनों सिद्धांतों का समन्वय हो जाता है और इस सिद्धांत के द्वारा भौतिकी और रसायन एक दूसरे से संबद्ध हो जाते हैं। .

नई!!: रीमान जीटा फलन और भौतिक शास्त्र · और देखें »

मूल (फलन के)

गणित में किसी फलन का मूल वह संख्या होती है जिस पर उस फलन का मान शून्य हो जाता है। इसे 'फलन का शून्य' या 'फलन का हल' भी कहते हैं। किसी फलन के शून्य, एक, या एक से अधिक, मूल हो सकते हैं। उदाहरण के लिये निम्नलिखित फलन को देखिये- फलन ƒ का एक मूल 3 है क्योंकि x.

नई!!: रीमान जीटा फलन और मूल (फलन के) · और देखें »

लियोनार्ड ओइलर

लियोनार्ड ओइलर लियोनार्ड ओइलर (Leonhard Euler; १५ अप्रैल १७०७, बाज़ेल - १८ सितंबर १७८३) एक स्विस गणितज्ञ थे। ये जोहैन बेर्नूली के शिष्य थे। गणित के संकेतों को भी ऑयलर की देन अपूर्व है। इन्होंने संकेतों में अनेक संशोधन करके त्रिकोणमितीय सूत्रों को क्रमबद्ध किया। 1734 ई. में ऑयलर ने x के किसी फलन के लिए f (x), 1728 ई. में लघुगणकों के प्राकृत आधार के लिए e, 1750 ई. में अर्ध-परिमिति के लिए s, 1755 ई. में योग के लिए Σ और काल्पनिक ईकाई के लिए i संकेतों का प्रचलन किया। 1766 ई. में ये अंधे हो गए, परंतु मृत्यु पर्यंत (18 सितंबर 1783 ई.) शोधकार्य में संलग्न रहे। .

नई!!: रीमान जीटा फलन और लियोनार्ड ओइलर · और देखें »

शुद्ध गणित

मोटे तौर पर, जो गणित अनुप्रयोग की चिन्ता किये बिना विकसित किया गया हो उसे शुद्ध गणित (pure mathematics) कहते हैं। विश्लेषणात्मक जटिलता (गहराई) और अमूर्तीकरण (abstraction) की सुन्दरता इसकी प्रमुख विशेषता है। अट्ठारहवीं शती से इस क्षेत्र में काफी काम हुए हैं। .

नई!!: रीमान जीटा फलन और शुद्ध गणित · और देखें »

श्रेणी (गणित)

गणित में किसी अनुक्रम के जोड़ को सीरीज कहा जाता है। उदाहरण के लिए, कोई श्रेणी सीमित (लिमिटेड) हो सकती है या अनन्त (इनफाइनाइट)। .

नई!!: रीमान जीटा फलन और श्रेणी (गणित) · और देखें »

सम्मिश्र विश्लेषण

सम्मिश्र विश्‍लेषण (Complex analysis) जिसे सामान्यतः सम्मिश्र चरों के फलनों का सिद्धान्त भी कहा जाता है गणितीय विश्लेषण की एक शाखा है जिसमें सम्मिश्र संख्याओं के फलनों का अध्ययन किया जाता है। यह बीजीय ज्यामिति, संख्या सिद्धान्त, व्यावहारिक गणित सहित गणित की विभिन्न शाखाओं में उपयोगी है तथा इसी प्रकार तरल गतिकी, उष्मागतिकी, यांत्रिक अभियान्त्रिकी और विद्युत अभियान्त्रिकी सहित भौतिक विज्ञान में भी उपयोगी है। .

नई!!: रीमान जीटा फलन और सम्मिश्र विश्लेषण · और देखें »

सांख्यिकी

एक ग्राफ जिसमें सामान्य वितरण (Normal distribution) प्रदर्शित है। सांख्यिकी, गणित की वह शाखा है जिसमें आँकड़ों का संग्रहण, प्रदर्शन, वर्गीकरण और उसके गुणों का आकलन का अध्ययन किया जाता है। सांख्यिकी एक गणितीय विज्ञान है जिसमें किसी वस्तु/अवयव/तंत्र/समुदाय से सम्बन्धित आकड़ों का संग्रह, विश्लेषण, व्याख्या या स्पष्टीकरण और प्रस्तुति की जाती है। यह विभिन्न क्षेत्रों में लागू है - अकादमिक अनुशासन (academic disciplines), इस से प्राकृतिक विज्ञान, सामाजिक विज्ञान, मानविकी, सरकार और व्यापार आदि। सांख्यिकीय तरीकों को डेटा के संग्रह के संग्रहण अथवा वर्णन के लिए इस्तेमाल किया जा सकता है। इसे वर्णनात्मक सांख्यिकी (descriptive statistics) कहा जाता है। इसके अतिरिक्त, डेटा में पैटर्न को इस तरह से मॉडल किया जा सकता है कि वह निष्कर्षों की यादृच्छिकता और अनिश्चितता का कारण बने और फिर इस प्रक्रिया को उस विधि, या जिस जनसंख्या का अध्ययन किया जा रहा हो, उसके बारे में अनुमान लगाने के लिए किया जाता है। इसे अनुमानित सांख्यिकी (inferential statistics) कहा जाता है। वर्णनात्मक तथा अनुमानित सांख्यिकी, दोनों में व्यावहारिक सांख्यिकी सम्मिलित है। एक और विद्या है - गणितीय सांख्यिकी (mathematical statistics), जो विषय के सैद्धान्तिक आधार से सम्बन्ध रखती है। आप किरण किसी श्रेणी में पदों के बेकरार को प्रदर्शित करता है जबकि विषमता का संबंध उसकी आकृति की विशिष्टताओं से होता है अन्य शब्दों में अवकरण हमें श्रेणी की संरचना के बारे में बताता है जबकि विषमता हमें वक्र की आकृति के बारे में बताता है अपकिरण हमें श्रेणी के पदों के मानक रूप में स्वीकृत अन्य किसी पद के व्यक्तिगत अंतरों की ओर संकेत करता है विषमता विचलनों की दशा की ओर संकेत करता है अब करण द्वितीय श्रेणी के माध्यम पर आधारित है .

नई!!: रीमान जीटा फलन और सांख्यिकी · और देखें »

विश्लेषी संख्या सिद्धान्त

विश्लेषी संख्या सिद्धान्त गणितीय विश्लेषण से शब्दार्थ के अनुसार गणित को सरलतम तत्वों में विघटित करने का तात्पर्य होता है। ये तत्व अंततोगत्वा संख्याएँ ही हैं। क्रॉनेकर ने भी कहा है: ईश्वर ने धन पूर्णांकों की रचना की है, तथा अन्य सभी संख्याएँ मनुष्य द्वारा बनाई हुई हैं। .

नई!!: रीमान जीटा फलन और विश्लेषी संख्या सिद्धान्त · और देखें »

अटकल

अटकल या 'ऊहा' (conjecture) ऐसे कथन को कहते हैं जो बहुविध जांचने पर सत्य या वास्तविक लगता हो किन्तु जिसकी सत्यता पूर्ण रूप से सिद्ध न की जा सकी हो। कार्ल पॉपर ने इस शब्द का वैज्ञानिक दर्शनशास्त्र में सर्वप्रथम प्रयोग करना आरम्भ किया। अटकल, परिकल्पना से इन अर्थ में भिन्न है कि कुछ स्वीकृत आधारों के द्वारा परिकल्पना की जाँच की जा सकती है। गणित में अनुमान उस कथन को कहते हैं जो सत्य प्रतीत होता है किन्तु जिसको विधिवत सिद्ध न किया जा सका हो। .

नई!!: रीमान जीटा फलन और अटकल · और देखें »

निवर्तमानआने वाली
अरे! अब हम फेसबुक पर हैं! »